Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/239627 
Year of Publication: 
2021
Citation: 
[Journal:] Journal of Risk and Financial Management [ISSN:] 1911-8074 [Volume:] 14 [Issue:] 5 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-15
Publisher: 
MDPI, Basel
Abstract: 
This article deals with the issue of managing bank credit risk using a cost risk model. Modeling of bank credit risk management was proposed based on neural-cell technologies, which expand the possibilities of modeling complex objects and processes and provide high reliability of credit risk determination. The purpose of the article is to improve and develop methodical support and practical recommendations for reducing the level of risk based on the value-at-risk (VaR) methodology and its subsequent combination with methods of fuzzy programming and symbiotic methodical support. The model makes it possible to create decision support subsystems for nonperforming loan management based on the neuro-fuzzy approach. For this paper, economic and mathematical tools (based on the VaR methodology) were used, which made it possible to analyze and forecast the dynamics of overdue payment; assess the quality of the credit portfolio of the bank; determine possible trends in bank development. A scientific and practical approach is taken to assess and forecast the degree of credit problematicity by qualitative criteria using a mathematical model based on a fuzzy technology, which can forecast the increased risk of loan default at an early stage in the process of monitoring the loan portfolio and model forecasting changes in the degree of credit problematicity on change of indicators. A methodology is proposed for the analysis and forecasting of indicators of troubled loan debt, which should be implemented as software and included in the decision support system during the process of monitoring the risk of the bank's credit portfolio.
Subjects: 
bank credit risks
bank expenses
credit portfolio
default
observation
rating
simulation modeling
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.