Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/23940
Autor:innen: 
Erscheinungsjahr: 
2005
Schriftenreihe/Nr.: 
Discussion Paper No. 2005,003E
Verlag: 
Universität Erfurt, Staatswissenschaftliche Fakultät, Erfurt
Zusammenfassung: 
Threshold Accepting (TA) is a powerful optimization heuristic from the class of stochastic local search algorithms. It has been applied successfully to different optimization problems in statistics and econometrics, including the uniform design problem. Using the latter application as example, the stochastic properties of a TA implementation are analyzed. We provide a formal framework for the analysis of optimization heuristics like TA, which can be used to estimate lower bounds and to derive convergence results. It is also helpful for tuning real applications. Based on this framework, empirical results are presented for the uniform design problem. In particular, for two problem instances, the rate of convergence of the algorithm is estimated to be of the order of a power of -0.3 to -0.7 of the number of iterations.
Schlagwörter: 
Heuristic optimization
Threshold Accepting
Stochastic analysis of heuristics
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
191.78 kB





Publikationen in EconStor sind urheberrechtlich geschützt.