Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/239181
Autor:innen: 
Kim, Jong-Min
Xia, Leixin
Kim, Iksuk
Lee, Seungjoo
Lee, Keon-Hyung
Datum: 
2020
Quellenangabe: 
[Journal:] Journal of Risk and Financial Management [ISSN:] 1911-8074 [Volume:] 13 [Year:] 2020 [Issue:] 5 [Pages:] 1-12
Verlag: 
MDPI, Basel
Zusammenfassung: 
Analyzing the success of movies has always been a popular research topic in the film industry. Artificial intelligence and machine learning methods in the movie industry have been applied to modeling the financial success of the movie industry. The new contribution of this research combined Bayesian variable selection and machine learning methods for forecasting the return on investment (ROI). We also attempt to compare machine learning methods including the quantile regression model with movie performance data in terms of in-sample and out of sample forecasting.
Schlagwörter: 
quantile regression
neural network
machine learning
forecasting
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
https://creativecommons.org/licenses/by/4.0/
Dokumentart: 
Article

Datei(en):
Datei
Größe
1.25 MB





Publikationen in EconStor sind urheberrechtlich geschützt.