Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/236785 
Autor:innen: 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Statistics in Transition New Series [ISSN:] 2450-0291 [Volume:] 21 [Issue:] 4 [Publisher:] Exeley [Place:] New York [Year:] 2020 [Pages:] 144-158
Verlag: 
Exeley, New York
Zusammenfassung: 
We consider nonparametric estimation of a distribution function when data are collected from multiple overlapping data sources. Main statistical challenges include (1) heterogeneity of data sets, (2) unidentified duplicated records across data sets, and (3) dependence due to sampling without replacement from a data source. The proposed estimator is computable without identifying duplication but corrects bias from duplicated records. We show the uniform consistency of the proposed estimator over the real line and its weak convergence to a Gaussian process. Based on these asymptotic properties, we propose a simulation-based confidence band that enjoys asymptotically correct coverage probability. The finite sample performance is evaluated through a simulation study. A Wilms tumor example is provided.
Schlagwörter: 
confidence band
data integration
Gaussian process
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.