Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/235530
Autoren: 
Buchali, Katrin
Datum: 
2021
Schriftenreihe/Nr.: 
Hohenheim Discussion Papers in Business, Economics and Social Sciences No. 02-2021
Zusammenfassung: 
With the advent of big data, unique opportunities arise for data collection and analysis and thus for personalized pricing. We simulate a self-learning algorithm setting personalized prices based on additional information about consumer sensitivities in order to analyze market outcomes for consumers who have a preference for fair, equitable outcomes. For this purpose, we compare a situation that does not consider fairness to a situation in which we allow for inequity-averse consumers. We show that the algorithm learns to charge different, revenue-maximizing prices and simultaneously increase fairness in terms of a more homogeneous distribution of prices.
Schlagwörter: 
pricing algorithm
reinforcement learning
Q-learning
price discrimi-nation
fairness
inequity
JEL: 
D63
D91
L12
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
1.26 MB





Publikationen in EconStor sind urheberrechtlich geschützt.