Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/235351 
Erscheinungsjahr: 
2021
Schriftenreihe/Nr.: 
CESifo Working Paper No. 8981
Verlag: 
Center for Economic Studies and Ifo Institute (CESifo), Munich
Zusammenfassung: 
Assessing the robustness of the results of econometric analysis is a long standing subject of lively research. The majority of the literature focuses on sensitivity to model specification, while the quantification of sensitivity to sets of influential observations has received relatively little attention. A major obstacle in this context is masking, a phenomenon where influential observations obscure each other, which makes their identification particularly challenging. We show how inferential measures are affected by influential sets of observations and present two adaptive algorithms aimed at identifying such sets. We demonstrate the merits of these algorithms via simulation studies and empirical applications. These exercises show that masking problems and a pronounced sensitivity to influential sets are present in a wide range of scenarios. Overall, our findings suggest that increased attention to influential sets is warranted and comprehensive robustness measures for regression analysis are required.
Schlagwörter: 
regression diagnostics
robustness
masking
influence
JEL: 
C18
C20
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
478.54 kB





Publikationen in EconStor sind urheberrechtlich geschützt.