Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/235234
Autoren: 
Sibbertsen, Philipp
Lampert, Timm
Müller, Karsten
Taktikos, Michael
Datum: 
2021
Schriftenreihe/Nr.: 
Hannover Economic Papers (HEP) No. 686
Zusammenfassung: 
This paper argues that the distribution of the coefficients of the regular continued fraction should be considered for each algebraic number of degree >2 separately. For random numbers the coefficients are distributed by the Gauss-Kuzmin distribution (also called Khinchin's law). We apply the Kullback Leibler Divergence (KLD) to show that the Gauss-Kuzmin distribution does not fit well for algebraic numbers of degree > 2. Our suggestion to truncate the Gauss-Kuzmin distribution for finite parts fits slightly better, but its KLD is still much larger than the KLD of a random number. We consider differences regarding Khinchin's constant and Khinchin's approximation speed between random and algebraic numbers and conclude that laws concerning the random numbers do not automatically carry over to the algebraic numbers.
Schlagwörter: 
continued fraction
truncated Gauss-Kuzmin distribution
Khinchin's constant
Kullback Leibler Divergence
algebraic number
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
196.04 kB





Publikationen in EconStor sind urheberrechtlich geschützt.