Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/230784 
Erscheinungsjahr: 
2019
Schriftenreihe/Nr.: 
IRTG 1792 Discussion Paper No. 2019-008
Verlag: 
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series", Berlin
Zusammenfassung: 
Deep learning has substantially advanced the state-of-the-art in computer vision, natural language processing and other elds. The paper examines the potential of contemporary recurrent deep learning architectures for nancial time series forecasting. Considering the foreign exchange market as testbed, we systematically compare long short-term memory networks and gated recurrent units to traditional recurrent architectures as well as feedforward networks in terms of their directional forecasting accuracy and the profitability of trading model predictions. Empirical results indicate the suitability of deep networks for exchange rate forecasting in general but also evidence the diculty of implementing and tuning corresponding architectures. Especially with regard to trading pro t, a simpler neural network may perform as well as if not better than a more complex deep neural network.
Schlagwörter: 
Deep learning
Financial time series forecasting
Recurrent neural networks
Foreign exchange rates
JEL: 
C00
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.