Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/230574
Autoren: 
MacKinnon, James G.
Webb, Matthew
Datum: 
2019
Schriftenreihe/Nr.: 
Queen’s Economics Department Working Paper No. 1421
Zusammenfassung: 
We discuss when and how to deal with possibly clustered errors in linear regression models. Specifically, we discuss situations in which a regression model may plausibly be treated as having error terms that are arbitrarily correlated within known clusters but uncorrelated across them. The methods we discuss include various covariance matrix estimators, possibly combined with various methods of obtaining critical values, several bootstrap procedures, and randomization inference. Special attention is given to models with few treated clusters and clusters that vary in size, where inference may be problematic. Two empirical examples and a simulation experiment illustrate the methods we discuss and the concerns we raise.
Schlagwörter: 
clustered data
cluster-robust variance estimator
CRVE
wild cluster bootstrap
robust inference
JEL: 
C15
C21
C23
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
598.71 kB





Publikationen in EconStor sind urheberrechtlich geschützt.