Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/230116
Autoren: 
Bayer, Christian
Friz, Peter K.
Gassiat, Paul
Martin, Jorg
Stemper, Benjamin
Datum: 
2019
Quellenangabe: 
[Journal:] Mathematical Finance [ISSN:] 1467-9965 [Volume:] 30 [Issue:] 3 [Pages:] 782-832
Zusammenfassung: 
Abstract A new paradigm has emerged recently in financial modeling: rough (stochastic) volatility. First observed by Gatheral et al. in high‐frequency data, subsequently derived within market microstructure models, rough volatility captures parsimoniously key‐stylized facts of the entire implied volatility surface, including extreme skews (as observed earlier by Alòs et al.) that were thought to be outside the scope of stochastic volatility models. On the mathematical side, Markovianity and, partially, semimartingality are lost. In this paper, we show that Hairer's regularity structures, a major extension of rough path theory, which caused a revolution in the field of stochastic partial differential equations, also provide a new and powerful tool to analyze rough volatility models.
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
http://creativecommons.org/licenses/by/4.0/
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.