Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/22816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHilbert, Andreasen_US
dc.date.accessioned2009-01-29T15:09:27Z-
dc.date.available2009-01-29T15:09:27Z-
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/10419/22816-
dc.description.abstractDecision trees are used very successfully for the identification resp. classification task ofobjects in many domains like marketing (e.g. Decker, Temme (2001)) or medicine. Otherprocedures to classify objects are for instance the logistic regression, the logit- or probitanalysis, the linear or squared discriminant analysis, the nearest neighbour procedure orsome kernel density estimators. The common aim of all these classification procedures isto generate classification rules which describe the correlation between some independentexogenous variables resp. attributes and at least one endogenous variable, the so calledclass membership variable.en_US
dc.language.isoengen_US
dc.publisheren_US
dc.relation.ispartofseries|aArbeitspapiere zur mathematischen Wirtschaftsforschung |x180en_US
dc.subject.ddc330en_US
dc.subject.stwEntscheidungsbaumen_US
dc.subject.stwKorrelationen_US
dc.subject.stwTheorieen_US
dc.titleSome Remarks about the Usage of Asymmetric Correlation Measurements for the Induction of Decision Treesen_US
dc.typeWorking Paperen_US
dc.identifier.ppn379948885en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
dc.identifier.repecRePEc:zbw:augamw:180-

Files in This Item:
File
Size
142.63 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.