Publisher:
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund
Abstract:
Sometimes one may be confronted with classification problems where classes are constituted of several subclasses that possess different distributions and therefore destroy accurate models of the entire classes as one similar group. An issue is modelling via local models of several subclasses. In this paper, a method is presented of how to handle such classification problems where the subclasses are furthermore characterized by different subsets of the variables. Situations are outlined and tested where such local models in different variable subspaces dramatically improve the classification error.