Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/225556
Autoren: 
Banerjee, Subrato
Torgler, Benno
Datum: 
2020
Schriftenreihe/Nr.: 
CREMA Working Paper No. 2020-14
Zusammenfassung: 
Because the use of p-values in statistical inference often involves the rejection of a hypothesis on the basis of a number that itself assumes the hypothesis to be true, many in the scientific community argue that inference should instead be based on the hypothesis' actual probability conditional on supporting data. In this study, therefore, we propose a non-Bayesian approach to achieving statistical inference independent of any prior beliefs about hypothesis probability, which are frequently subject to human bias. In doing so, we offer an important statistical tool to biology, medicine, and any other academic field that employs experimental methodology.
Schlagwörter: 
Statistical inference
experimental science
hypothesis testing
conditional probability
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
330.24 kB





Publikationen in EconStor sind urheberrechtlich geschützt.