Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/223089
Authors: 
Zenz, David
Year of Publication: 
2020
Series/Report no.: 
wiiw Statistical Report 9
Abstract: 
Wir stellen ein Maß für die Beziehung zwischen zwei Städten/Regionen basierend auf Suchanfragen vor, ausgehend von Merkmalen der Suchanfragen-Zeitreihen nach Zerlegung der Zeitreihe mittels STL (Komponentenzerlegung mittels lokaler linearer Kernregression). Grundlage für das Maß sind einerseits die Eigenschaft 'Trendstärke', welches die Stärke des zugrundeliegenden Trends (egal ob steigend oder fallend) der Zeitreihe beschreibt, sowie das Feature 'linearity' der letzten fünf Jahre, welches uns die Richtung des Trends gibt. Die Kombination aus diesen Features der beiden Richtungen der Suchanfragen gibt uns ein Maß, welches für die Analyse der Entwicklung des vorgestellten Beziehungsmaßes über den Beobachtungszeitraum 2004-2020 in unterschiedlichen Suchkategorien zwischen zwei Städte/Regionen verwendet werden kann. Wir präsentieren Beispiele basierend auf Wien als point-of-interest im Kontext 'Wien und die Städte Europas', und schlagen ein Dashboard mit den verwendeten Indikatoren für Politik-Entscheidungen vor.
Abstract (Translated): 
We introduce a measure of linkage for the relationship between cities/regions, based on time series features of search engine queries. The used features are backed by time series decomposition using STL, i.e. seasonal and trend decomposition using Loess, precisely the strength of the trend and the linearity of a time series. The combination of these two features for both sides of search interest, e.g. the search interest for a certain topic in the city of Berlin based on search queries posed in Vienna, allows for the analysis of the development of this computed measure of linkage for the period 2004-2020 in various search engine categories provided by Google Trends between cities/regions in Europe. We then present examples based on the city of Vienna as a point-of-interest for selected topics and propose a dashboard for policy decisions.
Subjects: 
Zeitreihenanalyse
Big Data
Google Trends
Suchanfragen
Politik
Time Series Analysis
Big Data
Google Trends
Search Engine Queries
Policy
JEL: 
C49
C80
C82
C87
C88
M30
R00
Z10
Z30
Document Type: 
Research Report

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.