Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/22217
Autoren: 
Čížek, Pavel
Härdle, Wolfgang
Datum: 
2003
Schriftenreihe/Nr.: 
SFB 373 Discussion Paper No. 2003,1
Zusammenfassung: 
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way that preserves all advantages of the original approach. The best of the proposed robust modifications, which we refer to as MAVE-WMAD-R, is sufficiently robust to outliers and data from heavy tailed distributions, it is easy to implement, and surprisingly, it also outperforms the original method in small sample behaviour even when applied to normally distributed data.
Schlagwörter: 
nonparametric regression
dimension reduction
minimum average variance estimator
robust estimation
median absolute deviation
L1 regression
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
142 kB





Publikationen in EconStor sind urheberrechtlich geschützt.