Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/220032 
Year of Publication: 
2019
Series/Report no.: 
Tinbergen Institute Discussion Paper No. TI 2019-083/III
Publisher: 
Tinbergen Institute, Amsterdam and Rotterdam
Abstract: 
To what extent can the bootstrap be applied to conditional mean models â€" such as regression or time series models â€" when the volatility of the innovations is random and possibly non-stationary? In fact, the volatility of many economic and financial time series displays persistent changes and possible non-stationarity. However, the theory of the bootstrap for such models has focused on deterministic changes of the unconditional variance and little is known about the performance and the validity of the bootstrap when the volatility is driven by a non-stationary stochastic process. This includes near-integrated exogenous volatility processes as well as near-integrated GARCH processes, where the conditional variance has a diffusion limit; a further important example is the case where volatility exhibits infrequent jumps. This paper fills this gap in the literature by developing conditions for bootstrap validity in time series and regression models with non-stationary, stochastic volatility. We show that in such cases the distribution of bootstrap statistics (conditional on the data) is random in the limit. Consequently, the conventional approaches to proofs of bootstrap consistency, based on the notion of weak convergence in probability of the bootstrap statistic, fail to deliver the required validity results. Instead, we use the concept of `weak convergence in distribution' to develop and establish novel conditions for validity of the wild bootstrap, conditional on the volatility process. We apply our results to several testing problems in the presence of non-stationary stochastic volatility, including testing in a location model, testing for structural change using CUSUM-type functionals, and testing for a unit root in autoregressive models. Importantly, we show that sufficient conditions for conditional wild bootstrap validity include the absence of statistical leverage effects, i.e., correlation between the error process and its future conditional variance. The results of the paper are illustrated using Monte Carlo simulations, which indicate that a wild bootstrap approach leads to size control even in small samples.
Subjects: 
Bootstrap
Non-stationary stochastic volatility
Random limit measures
Weak convergence in Distribution
JEL: 
C32
Document Type: 
Working Paper

Files in This Item:
File
Size
887.73 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.