Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/215459
Authors: 
Apel, Mikael
Grimaldi, Marianna
Hull, Isaiah
Year of Publication: 
2019
Series/Report no.: 
Sveriges Riksbank Working Paper Series 381
Abstract: 
The purpose of central bank minutes is to give an account of monetary policy meeting discussions to outside observers, thereby enabling them to draw informed conclusions about future policy. However, minutes are by necessity a shortened and edited representation of a broader discussion. Consequently, they may omit information that is predictive of future policy decisions. To investigate this, we compare the information content of the FOMC's minutes and transcripts, focusing on three dimensions which are likely to be excluded from the minutes: 1) the committee's degree of hawkishness; 2) the chairperson's degree of hawkishness; and 3) the level of agreement between committee members. We measure committee and chairperson hawkishness with a novel dictionary that is constructed using the FOMC's minutes and transcripts. We measure agreement by performing deep transfer learning, a technique that involves training a deep learning model on one set of documents - U.S. congressional debates - and then making predictions on another: FOMC transcripts. Our findings suggest that transcripts are more informative than minutes and heightened committee agreement typically precedes policy rate increases.
Subjects: 
Central Bank Communication
Monetary Policy
Machine Learning
JEL: 
D71
D83
E52
E58
Document Type: 
Working Paper

Files in This Item:
File
Size
600.52 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.