Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/209322
Authors: 
Tietze, Ann-Carina
Cirullies, Jan
Otto, Boris
Year of Publication: 
2017
Citation: 
[Editor:] Kersten, Wolfgang [Editor:] Blecker, Thorsten [Editor:] Ringle, Christian M. [Title:] Digitalization in Supply Chain Management and Logistics: Smart and Digital Solutions for an Industry 4.0 Environment. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 23 [ISBN:] 978-3-7450-4328-0 [Pages:] 467-489
Abstract: 
Transforming increasingly growing data volumes into knowledge and improving its usage requires knowledge management models (KMM). KMM structures the workflow for decision taking based on knowledge. Industry-suitable requirements for a KMM, in particular for automotive supply chains (SC) and supply-critical bottlenecks, are not raised, especially concerning the crucial parameter of timecriticality. As none of the investigated models suits time-related specifications, requirements for time-critical knowledge management (KM) are derived from former case studies (CS) in the manufacturing automotive industry by literature research. These requirements will be used to evaluate existing KMM proposed in literature. Requirements for a KMM, which supports the manufacturing automotive industry (AI) in time-critical cases, are collected from practice by means of group discussions, generalised, abstracted and verified such as real-time capability, availability and accessibility, incentives for knowledge-sharing or intuitive handling. In particular, it addresses the application case of a supply-critical bottleneck in the inbound logistics. This results in rethinking of knowledge as a fundamental, time-critical resource for the reduction of supply risks. Currently, there are neither KMMs that involve time-criticality supporting industry to deal with increasing data and knowledge volumes nor precise requirements for time-critical KM in case of a supply-bottleneck in the AI. The importance of time-critical knowledge in contrast to mere data is shown. Finally, time-criticality is highlighted by showing its value to minimise production-breakdown-risks. The aim is to raise awareness about the need for changes in existing processes in the AI and to define the scope of scientific research needs.
Subjects: 
time-critical knowledge management
bottleneck management
automotive industry requirements
case study research
Persistent Identifier of the first edition: 
Creative Commons License: 
https://creativecommons.org/licenses/by-sa/4.0/
Document Type: 
Conference Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.