Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/205897 
Erscheinungsjahr: 
2016
Quellenangabe: 
[Journal:] Cogent Business & Management [ISSN:] 2331-1975 [Volume:] 3 [Publisher:] Taylor & Francis [Place:] Abingdon [Year:] 2016
Verlag: 
Taylor & Francis, Abingdon
Zusammenfassung: 
In this study, a new way to improve the Heuristic Bubble Algorithm (HBA) is presented. HBA is a nature-inspired algorithm, which is a new approach to and initially implemented for, vehicle routing problems of pickup and delivery (VRPPD). Later, it was reinforced to solve other routing problems, such as vehicle routing problem with time windows (VRPTW), and vehicle routing problem with stochastic demands (VRPSD). HBA is a greedy algorithm. It will mostly find local optimal solutions. The proposed method is an improvement over HBA enabling it to reach the global minimum. It uses specialized simulated annealing methods in its operators. A well-known data-set is used to benchmark the proposed method. Better results over HBA and some best results in literature are recorded.
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.