Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/197128
Autor:innen: 
Hellman, Ziv
Levy, Yehuda John
Datum: 
2017
Quellenangabe: 
[Journal:] Theoretical Economics [ISSN:] 1555-7561 [Volume:] 12 [Year:] 2017 [Issue:] 3 [Pages:] 1089-1120
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
We show that every Bayesian game with purely atomic types has a measurable Bayesian equilibrium when the common knowledge relation is smooth. Conversely, for any common knowledge relation that is not smooth, there exists a type space that yields this common knowledge relation and payoffs such that the resulting Bayesian game does not have any Bayesian equilibrium. We show that our smoothness condition also rules out two paradoxes involving Bayesian games with a continuum of types: the impossibility of having a common prior on components when a common prior over the entire state space exists, and the possibility of interim betting/trade even when no such trade can be supported ex ante.
Schlagwörter: 
Bayesian games
Bayesian equilibrium
common priors
continuum of states
JEL: 
C72
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
426.91 kB





Publikationen in EconStor sind urheberrechtlich geschützt.