Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/195723 
Autor:innen: 
Erscheinungsjahr: 
2018
Quellenangabe: 
[Journal:] International Journal of Financial Studies [ISSN:] 2227-7072 [Volume:] 6 [Issue:] 2 [Publisher:] MDPI [Place:] Basel [Year:] 2018 [Pages:] 1-17
Verlag: 
MDPI, Basel
Zusammenfassung: 
Hidden Markov model (HMM) is a statistical signal prediction model, which has been widely used to predict economic regimes and stock prices. In this paper, we introduce the application ofHMMin trading stocks (with S&P 500 index being an example) based on the stock price predictions. The procedure starts by using four criteria, including the Akaike information, the Bayesian information, the Hannan Quinn information, and the Bozdogan Consistent Akaike Information, in order to determine an optimal number of states for the HMM. The selected four-state HMM is then used to predict monthly closing prices of the S&P 500 index. For this work, the out-of-sample R2 OS, and some other error estimators are used to test the HMM predictions against the historical average model. Finally, both theHMMand the historical average model are used to trade the S&P 500. The obtained results clearly prove that the HMM outperforms this traditional method in predicting and trading stocks.
Schlagwörter: 
hidden Markov model
stock prices
observations
states
regimes
predictions
trading
out-of-sample R2
model validation
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
451.71 kB





Publikationen in EconStor sind urheberrechtlich geschützt.