Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/195618
Authors: 
Edem, Inyeneobong Ekoi
Oke, Sunday Ayoola
Adebiyi, Kazeem Adekunle
Year of Publication: 
2018
Citation: 
[Journal:] Journal of Industrial Engineering International [ISSN:] 2251-712X [Volume:] 14 [Year:] 2018 [Issue:] 3 [Pages:] 455-489
Abstract: 
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.
Subjects: 
Forecasting
Manufacturing
Accidents
Fuzzy–grey–Markov
Pattern recognition
Persistent Identifier of the first edition: 
Creative Commons License: 
https://creativecommons.org/licenses/by/4.0/
Document Type: 
Article
Social Media Mentions:

Files in This Item:
File
Size
960.86 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.