Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/195596 
Year of Publication: 
2018
Citation: 
[Journal:] Journal of Industrial Engineering International [ISSN:] 2251-712X [Volume:] 14 [Issue:] 1 [Publisher:] Springer [Place:] Heidelberg [Year:] 2018 [Pages:] 119-131
Publisher: 
Springer, Heidelberg
Abstract: 
Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.
Subjects: 
Condition based maintenance
Availability
Semi-Markov process
Degraded states
Mechanical repairable systems
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.