Please use this identifier to cite or link to this item:
Nouri, Houssem Eddine
Driss, Olfa Belkahla
Ghédira, Khaled
Year of Publication: 
[Journal:] Journal of Industrial Engineering International [ISSN:] 2251-712X [Volume:] 14 [Year:] 2018 [Issue:] 1 [Pages:] 1-14
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.
Flexible job shop
Genetic algorithm
Local search
Holonic multiagent
Hybrid metaheuristics
Persistent Identifier of the first edition: 
Creative Commons License:
Document Type: 

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.