Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/195532 
Erscheinungsjahr: 
2017
Quellenangabe: 
[Journal:] Quantitative Economics [ISSN:] 1759-7331 [Volume:] 8 [Issue:] 1 [Publisher:] The Econometric Society [Place:] New Haven, CT [Year:] 2017 [Pages:] 1-38
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. These functions are restricted to be linear for two-sided testing problems, but may be nonlinear for one-sided testing problems. In the most common case, this function selects a subvector of the parameter, such as a single component. The new inference method we propose controls asymptotic size uniformly over a large class of data distributions and improves upon the two existing methods that deliver uniform size control for this type of problem: projection-based and subsampling inference. Relative to projection-based procedures, our method presents three advantages: (i) it weakly dominates in terms of finite sample power, (ii) it strictly dominates in terms of asymptotic power, and (iii) it is typically less computationally demanding. Relative to subsampling, our method presents two advantages: (i) it strictly dominates in terms of asymptotic power (for reasonable choices of subsample size), and (ii) it appears to be less sensitive to the choice of its tuning parameter than subsampling is to the choice of subsample size.
Schlagwörter: 
Partial identification
moment inequalities
subvector inference
hypothesis testing
JEL: 
C01
C12
C15
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
449.07 kB





Publikationen in EconStor sind urheberrechtlich geschützt.