Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/188903 
Autor:innen: 
Erscheinungsjahr: 
2017
Schriftenreihe/Nr.: 
Queen's Economics Department Working Paper No. 1391
Verlag: 
Queen's University, Department of Economics, Kingston (Ontario)
Zusammenfassung: 
This paper proposes two consistent model selection procedures for factor-augmented regressions in finite samples. We first demonstrate that the usual cross-validation is inconsistent, but that a generalization, leave-d-out cross-validation, selects the smallest basis for the space spanned by the true factors. The second proposed criterion is a generalization of the bootstrap approximation of the squared error of prediction of Shao (1996) to factor-augmented regressions. We show that this procedure is consistent. Simulation evidence documents improvements in the probability of selecting the smallest set of estimated factors than the usually available methods. An illustrative empirical application that analyzes the relationship between expected stock returns and factors extracted from a large panel of United States macroeconomic and financial data is conducted. Our new procedures select factors that correlate heavily with interest rate spreads and with the Fama-French factors. These factors have strong predictive power for excess returns.
Schlagwörter: 
factor model
consistent model selection
cross-validation
bootstrap
excess returns
macroeconomic and financial factors
JEL: 
C52
C53
C55
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
605.1 kB





Publikationen in EconStor sind urheberrechtlich geschützt.