Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/188899 
Erscheinungsjahr: 
2017
Schriftenreihe/Nr.: 
Queen's Economics Department Working Paper No. 1387
Verlag: 
Queen's University, Department of Economics, Kingston (Ontario)
Zusammenfassung: 
Inference for estimates of treatment effects with clustered data requires great care when treatment is assigned at the group level. This is true for both pure treatment models and difference-in-differences regressions. Even when the number of clusters is quite large, cluster-robust standard errors can be much too small if the number of treated (or control) clusters is small. Standard errors also tend to be too small when cluster sizes vary a lot, resulting in too many false positives. Bootstrap methods generally perform better than t-tests, but they can also yield very misleading inferences in some cases.
Schlagwörter: 
CRVE
grouped data
clustered data
panel data
wild cluster bootstrap
difference-in-differences
DiD regression
JEL: 
C15
C21
C23
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
593.65 kB





Publikationen in EconStor sind urheberrechtlich geschützt.