Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/179519 
Erscheinungsjahr: 
2018
Schriftenreihe/Nr.: 
QUCEH Working Paper Series No. 2018-06
Verlag: 
Queen's University Centre for Economic History (QUCEH), Belfast
Zusammenfassung: 
Patent studies inform our understanding of innovation. Any study of patenting involves classifying patent data according to a chosen taxonomy. The literature has produced numerous taxonomies, which means patents are being classified differently across studies. This potential inconsistency is compounded by a lack of documentation provided on existing taxonomies, making them diffcult to replicate. Because of this, we develop a new patent taxonomy using machine learning techniques, and propose a new methodology to automate patent classification. We contrast existing taxonomies with our own upon a widely used patent dataset. In a regression analysis of patent classes upon patent characteristics, we show that classification bias exists: the size, statistical significance, and direction of association of coefficients depend upon how a patent dataset has been classified. We recommend investigators adopt our approach to ensure future studies are comparable and replicable.
Schlagwörter: 
Innovation
Invention
Machine Learning
Patents
Patent Classification
Taxonomy
Economic History
JEL: 
K11
N24
N74
O31
O33
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
498.57 kB





Publikationen in EconStor sind urheberrechtlich geschützt.