Please use this identifier to cite or link to this item:
Apitzsch, Tilman
Klöffer, Christian
Jochem, Patrick
Doppelbauer, Martin
Fichtner, Wolf
Year of Publication: 
Series/Report no.: 
Working Paper Series in Production and Energy 17
Utilization of electric vehicles provides a solution to several challenges in today’s individual mobility. However, ensuring maximum efficient operation of electric vehicles is required in order to overcome their greatest weakness: the limited range. Even though the overall efficiency is already high, incorporating DC/DC converter into the electric drivetrain improves the efficiency level further. This inclusion enables the dynamic optimization of the intermediate voltage level subject to the current driving demand (operating point) of the drivetrain. Moreover, the overall drivetrain efficiency depends on the setup of other drivetrain components’ electric parameters. Solving this complex problem for different drivetrain parameter setups subject to the current driving demand needs considerable computing time for conventional solvers and cannot be delivered in real-time. Therefore, basic metaheuristics are identified and applied in order to assure the optimization process during driving. In order to compare the performance of metaheuristics for this task, we adjust and compare the performance of different basic metaheuristics (i.e. Monte-Carlo, Evolutionary Algorithms, Simulated Annealing and Particle Swarm Optimization). The results are statistically analyzed and based on a developed simulation model of an electric drivetrain. By applying the bestperforming metaheuristic, the efficiency of the drivetrain could be improved by up to 30% compared to an electric vehicle without the DC/DC- converter. The difference between computing times vary between 30 minutes (for the Exhaustive Search Algorithm) to about 0.2 seconds (Particle Swarm) per operating point. It is shown, that the Particle Swarm Optimization as well as the Evolutionary Algorithm procedures are the best-performing methods on this optimization problem. All in all, the results support the idea that online efficiency optimization in electric vehicles is possible with regard to computing time and success probability.
Electric drivetrain
Simulation model
Electric vehicle
Energy efficiency
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.