Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/172921 
Erscheinungsjahr: 
2016
Schriftenreihe/Nr.: 
Working Paper No. 2016-05
Verlag: 
Federal Reserve Bank of Chicago, Chicago, IL
Zusammenfassung: 
Mixed frequency Bayesian vector autoregressions (MF-BVARs) allow forecasters to incorporate a large number of mixed frequency indicators into forecasts of economic activity. This paper evaluates the forecast performance of MF-BVARs relative to surveys of professional forecasters and investigates the influence of certain specification choices on this performance. We leverage a novel real-time dataset to conduct an out-of-sample forecasting exercise for U.S. real gross domestic product (GDP). MF-BVARs are shown to provide an attractive alternative to surveys of professional forecasters for forecasting GDP growth. However, certain specification choices such as model size and prior selection can affect their relative performance.
Schlagwörter: 
mixed frequency
Bayesian VAR
real-time data
nowcasting
JEL: 
C32
C53
E37
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
815.79 kB





Publikationen in EconStor sind urheberrechtlich geschützt.