Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/171887
Autoren: 
Peiris, M. Shelton
Asai, Manabu
Datum: 
2016
Quellenangabe: 
[Journal:] Econometrics [ISSN:] 2225-1146 [Volume:] 4 [Year:] 2016 [Issue:] 3 [Pages:] 1-21
Zusammenfassung: 
In recent years, fractionally-differenced processes have received a great deal of attention due to their flexibility in financial applications with long-memory. This paper revisits the class of generalized fractionally-differenced processes generated by Gegenbauer polynomials and the ARMA structure (GARMA) with both the long-memory and time-dependent innovation variance. We establish the existence and uniqueness of second-order solutions. We also extend this family with innovations to follow GARCH and stochastic volatility (SV). Under certain regularity conditions, we give asymptotic results for the approximate maximum likelihood estimator for the GARMA-GARCH model. We discuss a Monte Carlo likelihood method for the GARMA-SV model and investigate finite sample properties via Monte Carlo experiments. Finally, we illustrate the usefulness of this approach using monthly inflation rates for France, Japan and the United States.
Schlagwörter: 
GARMA
GARCH
stochastic volatility
long-memory
fractional differencing
JEL: 
C18
C40
C58
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
http://creativecommons.org/licenses/by/4.0/
Dokumentart: 
Article

Datei(en):
Datei
Größe
380.73 kB





Publikationen in EconStor sind urheberrechtlich geschützt.