Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/161806 
Erscheinungsjahr: 
2016
Quellenangabe: 
[Journal:] Decision Analytics [ISSN:] 2193-8636 [Volume:] 3 [Issue:] 1 [Publisher:] Springer [Place:] Heidelberg [Year:] 2016 [Pages:] 1-18
Verlag: 
Springer, Heidelberg
Zusammenfassung: 
In many industrial situations, where systems must be monitored using data recorded throughout a historical period of observation, one cannot fully rely on sensor data, but often only has event data to work with. This, in particular, holds for legacy data, whose evaluation is of interest to systems analysts, reliability planners, maintenance engineers etc. Event data, herein defined as a collection of triples containing a time stamp, a failure code and eventually a descriptive text, can best be evaluated by using the paradigm of joint renewal processes. The present paper formulates a model of such a process, which proceeds by means of state dependent event rates. The system state is defined, at each point in time, as the vector of backward times, whereby the backward time of an event is the time passed since the last occurrence of this event. The present paper suggests a mathematical model relating event rates linearly to the backward times. The parameters can then be estimated by means of the method of moments. In a subsequent step, these event rates can be used in a Monte-Carlo simulation to forecast the numbers of occurrences of each failure in a future time interval, based on the current system state. The model is illustrated by means of an example. As forecasting system malfunctions receives increasingly more attention in light of modern conditionbased maintenance policies, this approach enables decision makers to use existing event data to implement state dependent maintenance measures.
Schlagwörter: 
Renewal processes
Linear damage accumulation
Renewal equation
Moment method
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.