Please use this identifier to cite or link to this item:
Patuelli, Roberto
Linders, Gert-Jan
Metulini, Rodolfo
Griffith, Daniel A.
Year of Publication: 
Series/Report no.: 
Quaderni - Working Paper DSE No. 1022
Alma Mater Studiorum - Università di Bologna, Dipartimento di Scienze Economiche (DSE), Bologna
Bilateral trade flows traditionally have been analysed by means of the spatial interaction gravity model. Still, (auto)correlation of trade flows has only recently received attention in the literature. This paper takes up this thread of emerging literature, and shows that spatial filtering (SF) techniques can take into account the autocorrelation in trade flows. Furthermore, we show that the use of origin and destination specific spatial filters goes a long way in correcting for omitted variable bias in an otherwise standard empirical gravity equation. For a cross-section of bilateral trade flows, we compare an SF approach to two benchmark specifications that are consistent with theoretically derived gravity. The results are relevant for a number of reasons. First, we correct for autocorrelation in the residuals. Second, we suggest that the empirical gravity equation can still be considered in applied work, despite the theoretical arguments for its misspecification due to omitted multilateral resistance terms. Third, if we include SF variables, we can still resort to any desired estimator, such as OLS, Poisson or negative binomial regression. Finally, interpreting endogeneity bias as autocorrelation in regressor variables and residuals allows for a more general specification of the gravity equation than the relatively restricted theoretical gravity equation. In particular, we can include additional country-specific push and pull variables, besides GDP (e.g., land area, landlockedness, and per capita GDP). A final analysis provides autocorrelation diagnostics according to different candidate indicators.
Persistent Identifier of the first edition: 
Creative Commons License:
Document Type: 
Working Paper

Files in This Item:
411.05 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.