Please use this identifier to cite or link to this item:
Shirazi, Hossein
Kia, Reza
Javadian, Nikbakhsh
Tavakkoli-Moghaddam, Reza
Year of Publication: 
[Journal:] Journal of Industrial Engineering International [ISSN:] 2251-712X [Volume:] 10 [Year:] 2014 [Pages:] 1-17
To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., [-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGAII for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.
Dynamic cellular manufacturing systems
Group layout
Production planning
Archived multiobjective simulated annealing
Persistent Identifier of the first edition: 
Creative Commons License:
Document Type: 

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.