Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/148885
Autor:innen: 
Zhu, Xuening
Wang, Weining
Wang, Hangsheng
Härdle, Wolfgang Karl
Datum: 
2016
Schriftenreihe/Nr.: 
SFB 649 Discussion Paper No. 2016-050
Verlag: 
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk, Berlin
Zusammenfassung: 
It is a challenging task to understand the complex dependency structures in an ultra-high dimensional network, especially when one concentrates on the tail dependency. To tackle this problem, we consider a network quantile autoregres- sion model (NQAR) to characterize the dynamic quantile behavior in a complex system. In particular, we relate responses to its connected nodes and node spe- ci c characteristics in a quantile autoregression process. A minimum contrast estimation approach for the NQAR model is introduced, and the asymptotic properties are studied. Finally, we demonstrate the usage of our model by in- vestigating the nancial contagions in the Chinese stock market accounting for shared ownership of companies.
Schlagwörter: 
Social Network
Quantile Regression
Autoregression
Systemic Risk
Financial Contagion
Shared Ownership
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
2.11 MB





Publikationen in EconStor sind urheberrechtlich geschützt.