Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/130594
Authors: 
Oikonomikou, Leoni Eleni
Year of Publication: 
2016
Series/Report no.: 
Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 203
Abstract: 
This paper examines the evidence regarding predictability in the market risk premium using artificial neural networks (ANNs), namely the Elman Network (EN) and the Higher Order Neural network (HONN), univariate ARMA and exponential smoothing techniques, such as Single Exponential Smoothing (SES) and Exponentially Weighted Moving Average (EWMA). The contribution of this paper is the inclusion of the South African market risk premium to the forecasting exercise and its direct comparison with US forecasting results. The market risk premium is defined as the expected rate of return on the market portfolio in excess of the shortterm interest rate for each market. All data are taken from January 2007 till December 2014 on a daily basis. Elman networks provide superior results among the tested models in both insample and out-of sample periods as well as among the tested markets. In general, neural networks beat the naive benchmark model and achieve to perform better than the rest of their linear tested counterparts. The forecasting models successfully capture patterns in the data that improve the forecasting accuracy of the tested models. Therefore, they can be applied to trading and investment purposes.
Subjects: 
forecasting performance
market risk premium
South African stock market
US stock market
JEL: 
C45
C52
G15
G17
Document Type: 
Working Paper

Files in This Item:
File
Size
909.51 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.