Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/130077
Authors: 
Ho, Kate
Rosen, Adam
Year of Publication: 
2015
Series/Report no.: 
cemmap working paper, Centre for Microdata Methods and Practice CWP64/15
Abstract: 
Advances in the study of partial identification allow applied researchers to learn about parameters of interest without making assumptions needed to guarantee point identification. We discuss the roles that assumptions and data play in partial identification analysis, with the goal of providing information to applied researchers that can help them employ these methods in practice. To this end, we present a sample of econometric models that have been used in a variety of recent applications where parameters of interest are partially identified, highlighting common features and themes across these papers. In addition, in order to help illustrate the combined roles of data and assumptions, we present numerical illustrations for a particular application, the joint determination of wages and labor supply. Finally we discuss the benefits and challenges of using partially identifying models in empirical work and point to possible avenues of future research.
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
File
Size
683.04 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.