Please use this identifier to cite or link to this item:
Chernozhukov, Victor
Galichon, Alfred
Hallin, Marc
Henry, Marc
Year of Publication: 
Series/Report no.: 
cemmap working paper No. CWP57/15
We propose new concepts of statistical depth, multivariate quantiles, vector quantiles and ranks, ranks, and signs, based on canonical transportation maps between a distribution of interest on Rd and a reference distribution on the d-dimensional unit ball. The new depth concept, called Monge-Kantorovich depth, specializes to halfspace depth for d = 1 and in the case of spherical distributions, but, for more general distributions, differs from the latter in the ability for its contours to account for non convex features of the distribution of interest. We propose empirical counterparts to the population versions of those Monge-Kantorovich depth contours, quantiles, ranks, signs, and vector quantiles and ranks, and show their consistency by establishing a uniform convergence property for empirical (forward and reverse) transport maps, which is the main theoretical result of this paper.
Statistical depth
vector quantiles
vector ranks
multivariate signs
empirical transport maps
uniform convergence of empirical transport
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.