Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/120444
Autoren: 
Baruník, Jozef
Křehlík, Tomáš
Datum: 
2014
Reihe/Nr.: 
IES Working Paper 30/2014
Zusammenfassung: 
In the past decade, the popularity of realized measures and various linear models for volatility forecasting has attracted attention in the literature on the price variability of energy markets. However, results that would guide practitioners to a specific estimator and model when aiming for the best forecasting accuracy are missing. This paper contributes to the ongoing debate with a comprehensive evaluation of multiple-step-ahead volatility forecasts of energy markets using several popular high-frequency measures and forecasting models. To capture the complex patterns hidden to linear models commonly used to forecast realized volatility, this paper also contributes to the literature by coupling realized measures with artificial neural networks as a forecasting tool. Forecasting performance is compared across models as well as realized measures of crude oil, heating oil, and natural gas volatility during three qualitatively distinct periods covering the precrisis period, recent global turmoil of markets in 2008, and the most recent post-crisis period. We conclude that coupling realized measures with artificial neural networks results in both statistical and economic gains, reducing the tendency to over-predict volatility uniformly during all tested periods. Our analysis favors the median realized volatility, as it delivers the best performance and is a computationally simple alternative for practitioners.
Schlagwörter: 
artificial neural networks
realized volatility
multiple-step-ahead forecasts
energy markets
JEL: 
C14
C53
G17
Dokumentart: 
Working Paper
Nennungen in sozialen Medien:

Datei(en):
Datei
Größe
774.29 kB





Publikationen in EconStor sind urheberrechtlich geschützt.