Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/112745
Autoren: 
Mueller, Matthias
Bogner, Kristina
Buchmann, Tobias
Kudic, Muhamed
Datum: 
2015
Schriftenreihe/Nr.: 
Hohenheim Discussion Papers in Business, Economics and Social Sciences No. 05-2015
Zusammenfassung: 
In our work we adopt a structural perspective and apply an agent-based simulation approach to analyse knowledge diffusion processes in four structurally distinct networks. The aim of this paper is to gain an in-depth understanding of how network characteristics, such as path length, cliquishness and the distribution and asymmetry of degree centrality affect the knowledge distribution properties of the system. Our results show - in line with the results of Cowan and Jonard (2007) - that an asymmetric or skewed degree distribution actually can have a negative impact on a network's knowledge diffusion performance in case of a barter trade knowledge diffusion process. Their key argument is that stars rapidly acquire so much knowledge that they interrupt the trading process at an early stage, which finally disconnects the network. However, our findings reveal that stars cannot be the sole explanation for negative effects on the diffusion properties of a network. In contrast, interestingly and quite surprisingly, our simulation results led to the conclusion that in particular very small, inadequately embedded agents can be a bottleneck for the efficient diffusion of knowledge throughout the networks.
Schlagwörter: 
innovation networks
knowledge diffusion
agent-based simulation
scale free networks
Netzwerk
Simulation
Wissen
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
632.54 kB





Publikationen in EconStor sind urheberrechtlich geschützt.