Abstract:
In this paper, we generalize the General Lotto game and the Colonel Blotto game to allow for battlefield valuations that are heterogeneous across battlefields and asymmetric across players, and for the players to have asymmetric resource constraints. We completely characterize Nash equilibrium in the generalized version of the General Lotto game and then show how this characterization can be applied to identify equilibria in the Colonel Blotto version of the game. In both games, we find that there exist sets of non-pathological parameter configurations of positive Lebesgue measure with multiple payoff nonequivalent equilibria.