Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/101350
Autor:innen: 
Khan, M. Ali
Rath, Kali P.
Datum: 
2011
Schriftenreihe/Nr.: 
Working Paper No. 586
Verlag: 
The Johns Hopkins University, Department of Economics, Baltimore, MD
Zusammenfassung: 
We present proofs, based on the Shapley-Folkman theorem, of the convexity of the range of a strongly continuous, finitely additive easure, as well as that of an atomless, countably additive measure. We also present proofs, based on diagonalization and separation arguments respectively, of the closure of the range of a purely atomic or purely nonatomic countably additive measure. A combination of these results yields Lyapunov's celebrated theorem on the range of a countably additive measure. We also sketch, through a comprehensive bibliography, the pervasive diversity of the applications of the Shapley-Folkman theorem in mathematical economics.
Schlagwörter: 
Strongly continuous measure
atomless measure
range of a measure
diagonalization argument
Hahn decomposition
Shapley-Folkman theorem
Lyapuonov's theorem
JEL: 
C07
D05
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
196.03 kB





Publikationen in EconStor sind urheberrechtlich geschützt.