Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/97410 
Year of Publication: 
2013
Series/Report no.: 
cemmap working paper No. CWP58/13
Publisher: 
Centre for Microdata Methods and Practice (cemmap), London
Abstract: 
We consider testing for weak instruments in a model with multiple endogenous variables. Unlike Stock and Yogo (2005), who considered a weak instruments problem where the rank of the matrix of reduced form parameters is near zero, here we consider a weak instruments problem of a near rank reduction of one in the matrix of reduced form parameters. For example, in a two-variable model, we consider weak instrument asymptotics of the form /- pi1 = delta pi2 + c / vn where /- pi1 and pi2 are the parameters in the two reduced-form equations, c is a vector of constants and n is the sample size. We investigate the use of a conditional first-stage F-statistic along the lines of the proposal by Angrist and Pischke (2009) and show that, unless delta = 0 , the variance in the denominator of their F-statistic needs to be adjusted in order to get a correct asymptotic distribution when testing the hypothesis H0 : pi1 = delta pi2. We show that a corrected conditional F-statistic is equivalent to the Cragg and Donald (1993) minimum eigenvalue rank test statistic, and is informative about the maximum total relative bias of the 2SLS estimator and the Wald tests size distortions. When delta = 0 in the two-variable model, or when there are more than two endogenous variables, further information over and above the Cragg-Donald statistic can be obtained about the nature of the weak instrument problem by computing the conditional first-stage F-statistics.
Subjects: 
weak instruments
multiple endogenous variables
F-test
JEL: 
C12
C36
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
File
Size
308.68 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.