EconStor >
The Johns Hopkins University, Baltimore, Md. >
Department of Economics, The Johns Hopkins University >
Working Papers, Department of Economics, The Johns Hopkins University >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/49869
  
Title:Nonparametric identification using instrumental variables: Sufficient conditions for completeness PDF Logo
Authors:Hu, Yingyao
Shiu, Ji-liang
Issue Date:2011
Series/Report no.:Working papers // the Johns Hopkins University, Department of Economics 581
Abstract:This paper provides sufficient conditions for the nonparametric identification of the regression function m(.) in a regression model with an endogenous regressor x and an instrumental variable z. It has been shown that the identification of the regression function from the conditional expectation of the dependent variable on the instrument relies on the completeness of the distribution of the endogenous regressor conditional on the instrument, i.e., f(x). We provide sufficient conditions for the completeness of f(x) without imposing a specific functional form, such as the exponential family. We show that if the conditional density f(x) coincides with an existing complete density at a limit point in the support of z, then f(x) itself is complete, and therefore, the regression function m(.) is nonparametrically identified. We use this general result provide specific sufficient conditions for completeness in three different specifications of the relationship between the endogenous regressor x and the instrumental variable z.
Subjects:nonparametric identification
instrumental variable
completeness
endo-geneity.
Document Type:Working Paper
Appears in Collections:Working Papers, Department of Economics, The Johns Hopkins University

Files in This Item:
File Description SizeFormat
662358791.pdf474.61 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/49869

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.