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A �nite set of equilibria for the
indeterminacy of linear rational

expectations models

Jean-Bernard Chatelain� and Kirsten Ralfy

July 25, 2014

Abstract

This paper demonstrates the existence of a �nite set of equilib-
ria in the case of the indeterminacy of linear rational expectations
models. The number of equilibria corresponds to the number of ways
to select n eigenvectors among a larger set of eigenvectors related to
stable eigenvalues. A �nite set of equilibria is a substitute to contin-
uous (uncountable) sets of sunspots equilibria, when the number of
independent eigenvectors for each stable eigenvalue is equal to one.
JEL classi�cation numbers: C60, C61, C62, E13, E60.
Keywords: Linear rational expectations models, indeterminacy,

multiple equilibria, matrix Riccati equation, sunspots.

"Das kann als Riccatische gleichung des matrizenkalküls ange-
sehen werden." Radon (1928) p.190.

1 Introduction

This paper demonstrates that there is a �nite set of rational expectations
equilibria in the case of indeterminacy for linear rational expectations models,
which is a substitute to uncountable (continuously in�nite) sets of sunspots
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equilibria (Gourieroux et al. (1982)). This occurs when the number of inde-
pendent eigenvectors for each stable eigenvalue is equal to one, in particular,
when all stable eigenvalues are distinct. This paper extends Blake and Kir-
sanova (2012) results for time-consistent optimal policy rules to the general
case of Blanchard Kahn (1980) solutions.
Blanchard and Kahn (1980) states that there are multiple equilibria with

rational expectations (or indeterminacy) when the number n of pre-determined
variables is lower than the number s of eigenvalues below one in absolute val-
ues. In this case, the initial values of the number m of non pre-determined
"forward" variables may be driven by continuous random variables of zero
mean, independently and identically distributed over time (Gourieroux et al.
(1982)).
Besides this continuous in�nity of sunspots equilibria, it is feasible to ex-

tend the computation of saddlepath unique rational expectations equilibrium
(Blanchard and Kahn (1980), Boucekkine and Le Van (1996)) to the case of
multiple equilibria. These rational expectations equilibria are solutions of a
matrix Riccati equation (Radon (1928), Le Van (1986), Abou-Kandil et al.
(2003)). This paper demonstrates that there is a �nite a number of equilib-
ria, at most equal to s!

n!(s�n)! . This is the number of ways to choose n distinct
eigenvectors among a larger set of s eigenvectors related to eigenvalues with
absolute values below one, when there is only one independent eigenvector
for each of these eigenvalues.

2 A �nite set of equilibria with indetermi-
nacy

Blanchard and Kahn (1980) consider a linear rational expectations model:�
kt+1
tqt+1

�
=

�
Ann Anm

Amn Amm

�
| {z }

A

�
kt
qt

�
+ zt (1)

where kt is an (n� 1) vector of variables predetermined at t with initial con-
ditions k0 given (shocks can straightforwardly be included into this vector); q
is an (m� 1) vector of variables non-predetermined at t; z is an (k � 1) vec-
tor of exogenous variables; A is (n+m)�(n+m) matrix,  is a (n+m)�k
matrix, tqt is the agents expectations of qt+1 de�ned as follows:

tqt+1 = Et (qt+1 p 
t) : (2)
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t is the information set at date t (it includes past and current values of all
endogenous variables and may include future values of exogenous variables).
A predetermined variable is a function only of variables known at date t
so that kt+1 = tkt+1 whatever the realization of the variables in 
t+1. A
non-predetermined variable can be a function of any variable in 
t+1, so
that we can conclude that qt+1 = tqt+1 only if the realization of all variables
in 
t+1 are equal to their expectations conditional on 
t.
Boundary conditions for the policy-maker�s �rst order conditions are the

given initial conditions for predetermined variables k0 and Blanchard and
Kahn (1980) hypothesis ruling out the exponential growth of the expectations
of w =(k;q; z):

8t 2 N,9wt 2 Rk,9�t 2 R, such that jEt (wt+1 p 
t)j � (1 + i)�t wt, 8i 2 R+:
(3)

De�nition: Besides other sunspots equilibria (Gourieroux et al. [1982]),
let us de�ne a set of rational expectations solutions, which are such that non
predetermined variables are a linear function of pre-determined variables,
where the matrix Nmn is to be found, and with bounded solutions for pre-
determined variables, so that the eigenvalues �i of the matrixAnn�AnmNmn

are below one ("stable eigenvalues"):

qt = �Nmnkt, 8t 2 N (4)

kt+1 = (Ann �AnmNmn)kt, 8t 2 N (5)

� (Ann �AnmNmn) = f�i with j�ij < 1; i 2 f1; :::; ngg (6)

Proposition: A has s stable eigenvalues and n+m� s unstable eigen-
values.
Case 1. When 0 � s < n, the number of stable eigenvalues is strictly be-

low the number of pre-determined variables, there is no rational expectations
equilibrium (Blanchard and Kahn (1980)).
Case 2. When s = n, the number of stable eigenvalues is strictly equal to

the number of predetermined variables, there is a unique rational expectations
equilibrium (Blanchard and Kahn (1980)).
Case 3. When n < s � n + m, the number of rational expectations

equilibria de�ned above is given by the number of ways of selecting n inde-

pendent (right column) eigenvectors
�
Pnn
Pmn

�
among a larger set of inde-

pendent eigenvectors related to stable eigenvalues. If Pnn is invertible, they
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corresponds to the number of rational expectations equilibria determined by
each matrix Nmn = �PmnP�1nn:
Case 3.1. Finite number of equilibria. If the number of independent

eigenvectors (geometric multiplicity) of each stable eigenvalues of A is ex-
actly one, the number of equilibria is given by s1!

n!(s1�n)! where the number of
stable eigenvalues not counting their multiplicity is denoted s1 � s. In par-
ticular, if all the stable eigenvalues of A are distinct, then the number of
equilibria is s!

n!(s�n)! .
Case 3.2. Uncountable number of equilibria. If there is at least one

stable eigenvalue of A with its number of independent eigenvectors (geomet-
ric multiplicity) which is at least equal to two, then, there always exists an
uncountable number of equilibria. This condition for an uncountable number
of equilibria is distinct from e.g. Gourieroux et al. (1982).
For example, for n = 1, m = 1, and with a unique stable eigenvalue �1

with two independent column vectors P = (P1;P2), there is an uncountable
number of single eigenvectors P� = P1+�P2 with � 2 C leading to solutions
Nmn;� = �Pmn;�P�1nn;�. For n = 2, m = 1, including another eigenvalue �3
with a multiplicity equal to one and an eigenvector denoted P3, there is a
single case of n = 2 columns eigenvector (P1;P2) and an uncountable number
of n = 2 eigenvector matrix P3� = (P3;P�) with � 2 C allowing to compute
solutions Nmn = �PmnP�1nn (see a numerical example for n = 2, m = 2 in
Abou-Kandil et al. (2003) p.25).
Proof:
Let us consider a matrix Nmn such that:

�
kN;t
qN;t

�
=

�
In 0nm

�Nmn Im

��
kt
qt

�
with T=

�
In 0nm

�Nmn Im

�
and T�1=

�
In 0nm
Nmn Im

�
(7)

So that:�
kN;t+1
qN;t+1

�
=

�
In 0nm
Nmn Im

��
Ann Anm

Amn Amm

��
In 0nm

�Nmn Im

��
kN;t
qN;t

�
�
kN;t+1
qN;t+1

�
=

�
Ann �AnmNmn Anm

g(Nmn) Amm +NmnAnm

��
kN;t
qN;t

�
with (8)

g(Nmn) = Amn +AmmNmn �NmnAmm �NmnAnmNmn = 0mn (9)

g(Nmn) = 0mn = @Nmn=@t is a matrix equation including a constant,
two linear terms and a quadratic term NmnAnmNmn, which Radon (1928)
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denoted as matrix Riccati extension of scalar Riccati di¤erential equations.
If Nmn is a solution with constant coe¢ cients of g(Nmn) = 0mn, then the
characteristic polynomial of matrix A is the product of two characteristic
polynomials, as det (T) = 1 = det (T�1):

det (A��In+m) = det (Ann �AnmNmn��In)�det (Amm +NmnAnm��Im) = 0
(10)

Each solution Nmn of g(Nmn) = 0mn corresponds to a particular par-
tition of the eigenvalues of the matrix A since its eigenvalues are exactly
the eigenvalues of Ann�AnmNmn (with n eigenvalues counting multiplicity)
and Amm + NmnAnm (with m eigenvalues counting multiplicity). A Jor-
dan canonical transformation J of the A matrix with P a matrix of right
eigenvectors is:

�
Ann Anm

Amn Amm

��
Pnn Pnm
Pmn Pmm

�
=

�
Pnn Pnm
Pmn Pmm

��
Jn 0nm
0mn Jm

�
(11)

where Jnn is a n�n Jordan matrix with the eigenvalues ofAnn�AnmNmn

and Jmm is a m�m Jordan matrix with the eigenvalues of Amm+NmnAnm.
One has:

�
Ann �AnmNmn Anm

0mn Amm +NmnAnm

��
In 0nm

�Nmn Im

��
Pnn Pnm
Pmn Pmm

�
=

�
In 0nm

�Nmn Im

��
Pnn Pnm
Pmn Pmm

��
Jn 0nm
0mn Jm

�
(12)

which implies:

�
(Ann �AnmNmn)Pnn +Anm (Pmn �NmnPnn) �

(Amm +NmnAnm) (Pmn �NmnPnn) �

�
=

�
PnnJnn �

(Pmn �NmnPnn)Jnn �

�
(13)

Because the eigenvalues of Amm + NmnAnm are not the eigenvalues of
Jnn, then (Pmn �NmnPnn) cannot stack eigenvectors (each of them distinct
from the zero vector by de�nition) of Amm + NmnAnm. Then, the second
equality for block matrices (i = 2; j = 1) is valid:

(Amm +NmnAnm) (Pmn �NmnPnn) = (Pmn �NmnPnn)Jnn (14)

only and only if Pmn�NmnPnn = 0. Then, if Pnn is invertible, one �nds
the solutions Nmn = �PmnP�1nn :
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According to the rational expectations equilibria de�nition, one needs to
�nd at least n stable eigenvalues, and compute Nmn using a set of n column

eigenvectors
�
Pnn
Pmn

�
related to these stable eigenvalues. The number of

rational expectations equilibria is then given by the number of ways of se-

lecting n independent (right column) eigenvectors
�
Pnn
Pmn

�
related to the

stable eigenvalues s � n.
Finally, the �rst equality for block matrices (i = 1; j = 1) becomes:

(Ann �AnmNmn)Pnn = PnnJnn (15)

Hence, the matrix Pnn is an eigenvectors matrix of the matrix Ann �
AnmNmn. Q.E.D.
A similar demonstration with transpose matrices holds for left row eigen-

vectors
�
Qmn

Qmm

�
with Q = P�1 chosen among a set of s > n row eigenvec-

tors related to stable eigenvalues. IfQmm is invertible, one �nds the solutions
Nmn = �PmnP�1nn = Q�1

mmQmn.

3 Conclusion

A �nite set of rational expectations equilibria (when the number of indepen-
dent eigenvectors for each stable eigenvalue is equal to one) exists at each
period. For a chosen equilibrium with a given set of eigenvectors at a given
period to be �nd again on the following periods, one needs to assume that the
economic agents select the same set of eigenvectors at each period. In this
case, economic agents shape their rational expectations following the same
procedure at each period in a time-consistent manner.
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