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1 Introduction

In forecasting with standard time series methods generally the following trade-off arises: given

the vast amount of macroeconomic time series all of which potentially contain important in-

formation on future macroeconomic dynamics, forecasters wish to use as much information as

possible to obtain precise parameter estimates and forecasts. Estimation and forecasting with

large cross-sections, however, may cause huge technical difficulties. As the number of parameters

to be estimated in large cross-section models quickly becomes very large, parameter estimates

might be imprecise and in-sample overfitting might occur. This can lead to poor out-of-sample

forecasts. In some cases estimation might even be infeasible due to the very limited number of

observations in typical macroeconomics applications.

To overcome this curse of dimensionality several large scale time series methods have been

proposed. In this paper, we study the performance of the three most prominent of these ap-

proaches, namely factor models, large Bayesian vector autoregressions and model averaging

techniques. These three approaches handle the dimensionality problem evoked by large datasets

by aggregating the informational content of the dataset, yet on different levels.

In particular, factor models (see e.g. Stock and Watson, 2002a,b; Bernanke and Boivin,

2003; Forni et al., 2000, 2005; Schumacher, 2007) aggregate the information contained in a large

number of time series into a small number of static or dynamic factors prior to the estimation.

These factor time series can be included into standard small scale forecasting models such as

autoregressive distributed lag models, vector autoregressions or Bayesian vector autoregressions.

Large Bayesian vector autoregressions (De Mol et al., 2008; Bańbura et al., 2010), on the

other hand, can handle a large number of time series by applying shrinkage to make estimation

feasible. The degree of shrinkage thereby increases with the cross-sectional size of the respective

model. With this method the information contained in a large dataset is thus aggregated during

the estimation process.

By contrast, when using model averaging techniques (see e.g. Bates and Granger, 1969; Stock

and Watson, 2003; Timmermann, 2006; Wright, 2009; Faust and Wright, 2009) aggregation takes

place after the estimation of a large number of small forecasting models, i.e. the final forecast is

computed as a weighted average of the forecasts of all the small forecasting models. Depending

on the specification of the weights used to compute the average, there exist several variants of

this approach, such as equal weighted averaging and Bayesian model averaging, for example.

Previous literature has mainly focused on evaluating the forecasting performance of one

or two of these large scale approaches relative to several small-scale benchmark models or to

each other. For example, Bernanke and Boivin (2003) compare forecasts obtained by a fac-

tor augmented autoregression (FAAR) and a factor augmented vector autoregression (FAVAR)

to those of several simple benchmark models and a weighted forecast consisting of either the

FAAR and the Federal Reserve’s Greenbook projections or the FAVAR and the Greenbook pro-

jections. They find that the weighted forecasts are more precise than the FAAR and the FAVAR

forecasts, which in turn dominate the forecasts of the simple benchmark models. Faust and

Wright (2009) evaluate alternative specifications of factor models as well as equal weighted and

Bayesian model averaging (EWA, BMA) relative to a number of simple benchmark models and
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the Greenbook projections. They find that the model averaging techniques perform better than

the factor based forecasting approaches. Bańbura et al. (2010) study the forecasting perfor-

mance of a large Bayesian vector autoregression (LBVAR) and a Bayesian factor augmented

vector autoregression (BFAVAR). According to their results the LBVAR generally outperforms

the BFAVAR. Finally, Berg and Henzel (2013) evaluate the relative forecasting performance of

the BFAVAR, the LBVAR and combinations of several small VARs for the Euro area in terms

of point and density forecasts. Their results indicate that while the LBVAR provides the most

accurate point forecasts, the BFAVAR yield the most precise density forecasts.1

The variety of forecasting performance based rankings of the different large scale approaches

shows that there is no consensus yet about which is the most useful method to extract the

predictive content from a large dataset. With this paper we seek to fill this gap by systematically

comparing the forecasting accuracy of all three most prominent large scale approaches.

Beyond that we contribute to the existing literature in the following ways. First, we do not

only study the relative performance of different forecasting methods, but we also check their

absolute forecasting accuracy. In particular, we test whether the forecasts obtained with the

different models are unbiased. Further, we report the share of the variance of each forecast time

series that can be explained by the different forecasting models.

Second, we check to what degree the relative performance of the different forecasting models

is robust against model misspecification. To do so, we analyse the accuracy of the forecasts of

the different models obtained with the ex post best performing specification of each model.

Third, we investigate which large scale forecasting method is suited best to simultaneously

predict a larger set of macroeconomic variables. Previous papers—with the exception of Carriero

et al. (2011) who forecast all the variables in a large dataset at the same time—only evaluate

forecasts for a small set of key variables which usually include output growth and the inflation

rate and in some cases a short-term interest rate and the unemployment rate. In practice,

however, forecasters might be interested in a larger number of macroeconomic variables. The

monthly survey of Consensus Economics among forecasters for example covers about ten vari-

ables per country. We think that the advantage of the large scale forecasting models is not

only their ability to process the informational content of many time series, but also to provide a

coherent forecasting framework that can be used to simultaneously forecast a larger set of core

variables.

Finally, while the majority of previous work focuses on US macroeconomic time series and

a small number of recent papers on the Euro area as a whole, we use a dataset for Germany.

This allows us to check whether the results of previous papers are robust to the usage of a large

dataset for another country that is smaller and more open than the US and the Euro area.

The dataset that we use consists of 123 variables in quarterly frequency covering a sample

period from 1978 until 2013. We include indicators from the following categories: composition

of GDP and gross value added by sectors, prices, labor market, financial market, industry,

1Going beyond purely reduced form forecasting models, Wolters (2014) compares the forecasting accuracy of
Dynamic Stochastic General Equilibrium (DSGE) models to the LBVAR and the Fed’s Greenbook projections.
He finds that weighted forecasts of several DSGE models and the LBVAR are more precise than those obtained
by individual DSGE models and a small Bayesian vector autoregression (BVAR) and come close to the accuracy
of the Greenbook projections at least for medium term horizons.
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construction, surveys and miscellaneous. Our dataset is a modified and updated version of

the dataset used in Schumacher (2007) where the forecasting performance of alternative factor

models is studied.

We estimate the three large scale forecasting models as well as a number of small benchmark

models using a moving window of 15 years of data. Thus, our evaluation sample ranges from 1993

through 2013. We compute forecasts up to eight quarters ahead for a small set of German key

macroeconomic variables, namely output growth, CPI inflation, a short term interest rate and

the unemployment rate. To evaluate the relative forecasting performance of the different models

we compare root means squared forecasting errors (RMSE), while we compute Mincer-Zarnowitz

regressions (see Mincer and Zarnowitz, 1969) to assess the absolute forecasting accuracy of each

model. The forecasting models are specified according to various information criteria. As a

robustness check we also specify the models based on their ex post forecasting performance.

Finally, we extend the analysis to a larger set of eleven macroeconomic variables.

Our results indicate that among the three large scale forecasting approaches the LBVAR

and the BFAVAR show the best overall forecasting performance. Both deliver forecasts that

are more precise than those obtained by a simple univariate autoregressive (AR) benchmark for

most of the variables of interest. By contrast, for the other factor based models as well as the

model averaging techniques the forecasting performance relative to the AR benchmark model

depends heavily on the variable to be forecast and the forecasting horizon.

Regarding the models’ robustness to misspeficiation, we find that the dynamic factor model

(DFM) clearly outperforms all other forecasting models if the forecasts obtained with the ex

post best performing specification of each model are compared. However, in the quasi real-time

exercise—where the number of lags and factors is chosen based on information criteria or past

forecasting accuracy—this performance is unattainable. By contrast, for the LBVAR and the

BFAVAR the differences in forecasting accuracy between the ex post optimal specification and

the quasi real-time specification are only small.

In general, the gains in forecasting accuracy obtained by the large scale approaches relative

to the simple AR benchmark rarely exceed 10% and are in most cases statistically insignificant.

One explanation for this might be that some of the time series show very little persistence and

are thus very difficult to forecast in general. We indicate for which variables this is the case

by reporting the R2 from the Mincer-Zarnowitz regressions. Furthermore, for some variables

univariate forecasting models might be hard to beat because many time series are characterized

by common components. This implies that parsimonious univariate models are often sufficient to

capture the main information contained in the data. Efficient multivariate modelling therefore

becomes a hard task so that improvements of the large data forecasting methods are rather

small (see also Carriero et al., 2011; Bernardini and Cubadda, 2014).

The remainder of this paper is structured as follows. In section 2 we outline the different

forecasting models. In section 3 we describe the dataset that we use, while in section 4 we

describe our forecasting approach. In section 5 we evaluate the absolute and relative forecasting

performance of the different models for four key variables and check for robustness against model

misspecification. In section 6 we extend the analysis to a larger set of of eleven macroeconomic

variables and finally, in section 7 we conclude.
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2 Forecasting Models

In the following, we describe the different forecasting models. Let {yi,t}
n
i=1 denote the set of

variables to be forecast and {xj,t}
m
j=1 the set of possible predictors for the estimation period

t = 1, ..., T .2 The total number of variables in our dataset is given by n + m = k. We com-

pute annualized quarter-on-quarter growth rates of all variables, denoted by {∆yi,t}
n
i=1 and

{∆xj,t}
m
j=1, respectively.

3 Given the information available at time T , we estimate all forecasting

models and construct forecasts {∆yi,T+h}
n
i=1 with h being the forecast horizon ranging from one

to eight quarters ahead.4

2.1 Large Bayesian VAR (LBVAR)

Consider the following VAR Zt = c + A1Zt−1 + ... + ApZt−p + ǫt, where the vector Zt =

(y1,t, ..., yn,t, x1,t, ..., xm,t)
′ contains all the k time series in the dataset, p is the number of lags

included in the estimation, c is a k x 1 vector of constants, A1, ..., Ap are k x k-dimensional

parameter matrices and ǫt is a k x 1 vector of independently identically distributed white noise

error terms with zero mean and covariance matrix Ψ.

We use Bayesian techniques to estimate the VAR outlined above. Since the number of

variables that we want to include in the estimation is fairly large (k = 123), we follow Bańbura

et al. (2010) and choose a prior that shrinks the parameters to be estimated. The degree of

shrinkage thereby increases with the size of the cross-section and thus allows the estimation of

a model where the number of parameters exceeds the number of observations by far. Bańbura

et al. (2010) show that this approach is suited well to capture the most important factors in

a dataset that is characterized by strong collinearity, as will be the case for our dataset which

includes for instance different price indices and business cycle indicators. We implement the

Bayesian shrinkage approach by using a version of the Normal inverse Wishart prior (see e.g.

Kadiyala and Karlsson, 1997) that is characterized as follows.5 First, the coefficients A1, ..., Ap

are assumed to be a priori independently and normally distributed. With respect to the constant

in the VAR the prior is assumed to be diffuse. The moments for the prior distribution of the

VAR coefficients are given by:

E[(Aℓ)ij ] =

{

δi = 1 or δi = µi for i = j, ℓ = 1

0 otherwise
(1)

and

V ar[(Aℓ)ij ] =







λ2

ℓ2 for i = j
λ2σ2

i

ℓ2σ2
j

otherwise,
(2)

2The variables contained in {yi,t}
n
i=1 and {xj,t}

m
j=1 are in log-levels except for those that are expressed in

rates such as the unemployment rate or interest rates which are included in levels.
3To avoid overly complicated notation, variables expressed in rates are included in levels in the ∆ terms.
4While some of the forecasting models directly yield growth rate forecasts, we obtain log-level forecasts from

the other models and use these to compute implied quarter-on-quarter growth rate forecasts.
5This prior is a natural conjugate prior for our VAR which implies that analytical results are available.

In contrast to the widely used Minnesota prior (Litterman, 1986) the Normal inverse Wishart prior allows for
correlation between the residuals of different equations of the VAR and does not assume that the residual variance-
covariance matrix is fixed and known.
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where δi denotes the prior coefficient mean, ℓ = 1, ..., p is the lag length, λ is a hyperparameter

governing the importance of the prior beliefs relative to the data and σi/σj is a scale parameter

adjusting the prior for the different scale and variability of the data.

According to this prior specification each equation of the VAR is centered around a random

walk with drift (δi = 1) or an autoregressive process (δi = µi < 1), respectively. The prior

also incorporates the belief that more recent lags of a variable should provide more reliable

information for the estimation. The zero coefficient prior on more recent lags is therefore not

imposed as tightly as on less recent lags.

The hyperparameter λ controls the degree of shrinkage of the parameters of the VAR which

increases with the size of the cross-section to avoid over-fitting. Bańbura et al. (2010) suggest

to set the tightness of the prior λ, so that the LBVAR achieves the same in sample-fit as an

unrestricted small VAR without shrinkage. We slightly depart from this approach and set λ

such that the LBVAR achieves the same in-sample fit as a small BVAR in our key variables

{yi,t}
n
i=1. We find that this increases the forecasting performance of the LBVAR considerably.6

In contrast to Bańbura et al. (2010), we do not set the prior coefficient means equal to zero for

stationary variables but rather equal to the sum of coefficient estimates µi defined as
∑p′

ι=1 βι

where βι denotes the parameter estimates obtained from the simple auxiliary autoregression

Zi,t = d +
∑4

ι=1 βιZi,t−ι + ut. In particular, we set δi = 1 if µi ≥ 1 and δi = µi if µi < 1.

This approach should capture the different degrees of persistence in macroeconomic time series.

Finally, in line with Bańbura et al. (2010), we obtain σi by computing the standard deviation of

the residuals of a univariate autoregression without constant for each of the k variables in the

model.

For the estimation we use the variables in log-levels rather than growth rates to not loose

information that might possibly be contained in the trends. We set the lag length p = 4, however

the forecasting performance of the LBVAR proves to be remarkably robust with respect to the

number of lags included. Following Bańbura et al. (2010) we implement the prior using dummy

variables and augment it to constrain the sum of coefficients of the VAR (see e.g. Sims and Zha,

1998).

2.2 Factor Models (FAAR, FAVAR, BFAVAR, DF)

For each of the i = 1, ..., n variables of interest ∆yi,t the (k − 1)-dimensional set of potential

predictors is defined as ∆Xj,t = (∆y1,t, ...,∆yi−1,t,∆yi+1,t, ...,∆yn,t,∆x1,t, ...,∆xm,t). We stan-

dardize ∆Xj,t to have zero mean and unit variance in order to obtain ∆X∗
j,t. Assume that

∆X∗
j,t can be represented by two components which are mutually orthogonal to each other and

unobservable, namely the common component χt and the idiosyncratic component ξt, so we

have ∆X∗
j,t = χt + ξt. The basic idea of factor models is that the information contained in the

common component χt can be aggregated into a vector of factors Ft of dimension κ ≤ (k − 1)

which are able to explain most of the variance of the predictor matrix ∆X∗
j,t. With these factors

the dimension of a large dataset can thus be reduced without loosing valuable information.

6The unrestricted VAR without shrinkage seems to be overparameterized which yields a worse forecasting
performance than a small BVAR with shrinkage. Since small BVARs have been successfully used in forecasting
for a long time (see e.g. Litterman, 1986), we regard them as the more suitable class of benchmark model.
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In general the common component relates to the factors as: χt =
∑s

l=0 ηlFt−l. Depending

on the lag structure that is assumed we can distinguish two model variants: the static factor

model with s = 0 and the dynamic factor model with s > 0.

2.2.1 Static Factor Models (FAAR, FAVAR, BFAVAR)

From the standardized set of predictors ∆X∗
j,t we first extract j = 1, ..., r factors Fj,t via

static principal component analysis. Following Stock and Watson (2002a) we use them to es-

timate a simple factor augmented direct autoregression (FAAR) ∆yi,t = ρ0 + ρ1∆yi,t−h + ... +

ρp∆yi,t−h+1−p+γ1F1,t−h+ ...+γrFr,t−h+ ǫt for each h = 1, ..., 8 and compute forecasts ∆yi,T+h.

As an alternative, we implement the approach proposed by Bernanke et al. (2005) according

to which the following factor augmented vector autoregression (FAVAR) is to be estimated to

allow for a more dynamic structure: Zt = c+ B1Zt−1 + ...+ BpZt−p + ǫt. Following Faust and

Wright (2009) we include the variable to be predicted and the factors extracted from the set

of predictors in the estimation, i.e. Zt = (yi,t, F1,t, ..., Fr,t)
′.7 The variables to be predicted are

included in log-levels to use information that is possibly contained in the trends. The FAVAR

forecasts are computed by iterating the recursive system of equations forward.

As a third variant of the static factor model we implement a Bayesian factor augmented vector

autoregression (BFAVAR). Here the factor augmented VAR Zt = c+B1Zt−1 + ...+BpZt−p + ǫt

with Zt = (yi,t, F1,t, ..., Fr,t)
′ is not estimated via OLS but rather via the Bayesian approach. The

prior is set in a manner analogous to the large Bayesian VAR with the following two exceptions.

First, we set the prior coefficient mean for the factors equal to zero to account for the fact that

the factors have been extracted from the standardized predictor matrix ∆X∗
j,t. Second, we set

the hyperparameter λ = 0.1, a standard value in the literature (see fo example Litterman, 1986).

As in the FAVAR, we include the variables in log-levels and compute forecasts iteratively.

For each estimation period T the number of lags used in the FAAR as well as in the FAVAR

and the BFAVAR estimation are obtained via the Bayesian information criterion. For the deter-

mination of the optimal number of factors r we use the information criterion proposed by Bai

and Ng (2002).

2.2.2 Dynamic Factor Models (DF)

We set up a dynamic factor model in the spirit of Forni et al. (2003) and Forni et al. (2005)

as laid out in Schumacher (2007). This implies extracting j = 1, ..., q dynamic factors F̃j,t

from the standardized set of predictors ∆X∗
j,t via dynamic principal component analysis in the

frequency domain. Defining F̃ ∗
t = (F̃ ′

j,t, F̃
′
j,t−1, ..., F̃

′
j,t−s)

′ as a vector of contemporaneous and

lagged factors with dimension r = q(s+1), the dynamic factor model can be rewritten as a static

factor model χt = ηF̃ ∗
t . The factors F̃

∗
t are used to augment a simple direct autoregression from

which forecasts ∆yi,T+h are computed. The number of lags of the dependent variable included

in the estimation is determined via the Bayesian information criterion. For the determination

7We also estimate a FAVAR that includes a small set of core variables (including the variable to be predicted)
and the factors (see e.g. Bernanke and Boivin, 2003; Bańbura et al., 2010). The forecasting performance of this
alternative, however, is worse, so that we do not include this model in the main results.
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of the optimal number of dynamic factors q we apply the information criterion proposed by Bai

and Ng (2007).

2.3 Model Averaging (EWA, BMA)

For each of the i = 1, ..., n variables of interest ∆yi,t we set up m simple direct autoregressive dis-

tributed lag models ∆yi,t = ρ0+ρ1∆yi,t−h+ ...+ρp∆yi,t−h+1−p+βj∆xj,t−h+ǫj,t for j = 1, ...,m.

The general idea of model averaging is to compute a forecast ∆yji,T+h with each model j and ag-

gregate these m model-specific forecasts into one final forecast, i.e. ∆yi,T+h =
∑m

j=1 ωj∆yji,T+h,

where ωj denotes the weight given to the model-specific forecast ∆yji,T+h.

According to the specification of the weight ωj that is attributed to each model-specific

forecast we distinguish two model averaging approaches. The first approach is Equal Weighted

Averaging (EWA) as in Stock andWatson (2003, 2004), where them simple models are estimated

via OLS and ωj = ω = 1
m .

Alternatively, we consider Bayesian Model Averaging (BMA) as laid out in Wright (2009),

where each of the model-specific forecasts ∆yji,T+h is weighted with the posterior probability

of the respective model P (Mj), i.e. ωj = P (Mj).
8 We implement the prior belief that each

of the j models is equally likely to be true. Technically, the posterior probability of model j,

P (Mj), is obtained by dividing the model-specific likelihood Lj = (1 + φ)−K/2S−T
j with Sj =

√

(ǫ̂j,t)′(ǫ̂j,t)− (ǫ̂j,t)′Xj,t−h(X
′
j,t−hXj,t−h)−1X ′

j,t−h(ǫ̂j,t)
φ

1+φ and ǫ̂j,t = ∆yi,t − B∗
jXj,t−h by the

sum of all mmodel likelihoods for a specific horizon h. HereK denotes the number of parameters

in the regressor matrix Xj,t−h = (1,∆yi,t−h, ...,∆yi,t−h+1−p,∆xj,t−h) and B∗
j = (ρ∗0, ρ

∗
1, ..., ρ

∗
p, β

∗
j )

is the coefficient prior mean. For the coefficients of the lagged dependent variable the prior mean

is obtained from the auxiliary autoregression ∆yi,t = ρ∗0 + ρ∗1∆yi,t−h + ...+ ρ∗p∆yi,t−h+1−p + ǫj,t,

whereas β∗
j is set to zero.

The hyperparameter φ governs the tightness of the prior. Following Faust and Wright (2009)

we set φ = 2. To compute the model-specific forecasts for each variable the model-specific

posterior mean of the coefficients B∗∗
j = BOLSφ

1+φ + B∗

1+φ is used as parameter estimate in the

autoregressive distributed lag equation. The number of lags p used in the estimation is obtained

via the Bayesian information criterion.

2.4 Small Benchmark Models (AR, VAR, BVAR)

In order to evaluate the relative forecasting performance of the three large scale approaches we

set up a number of small benchmark models which are described below.

2.4.1 Univariate Autoregression (AR)

We compute two types of autoregressive forecasts: direct and recursive. For the direct forecast

we estimate univariate autoregressions ∆yi,t = c +
∑p

j=1 ρj∆yi,t−h+1−j + ǫt for each of the

i = 1, ..., n variables of interest, separately for each forecasting horizon h. The forecasts of

8The model-specific posterior probability P (Mj) is calculated in each estimation period T for each forecasting
horizon h. For simplicity however, we omit the respective subscripts.
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each variable for forecasting horizon h are obtained from the respective model: ∆yi,T+h =

c +
∑p

j=1 ρj∆yi,T−j+1. For the recursive forecast we estimate the univariate autoregression

∆yi,t = c +
∑p

j=1 ρj∆yi,t−j + ǫt and iterate this equation forward to get forecasts for each

variable ∆yi,T+h. The number of lags p included in the estimation is obtained via the Bayesian

information criterion in both cases.

2.4.2 Vector Autoregression (VAR)

We estimate an unrestricted vector autoregressive model Yt = c+B1Yt−1+B2Yt−2+...+BpYt−p+

ǫt where Yt = (y1,t, ..., yn,t)
′ is a vector containing the variables to be forecast in log-levels. The

lag length p is determined via the Bayesian information criterion. The vector of forecasts YT+h

is computed by iterating the model forward.

2.4.3 Small Bayesian Vector Autoregression (BVAR)

We also implement the Bayesian counterpart to the unrestricted VAR in the variables to be

forecast. The prior is set in a manner analogous to the large Bayesian VAR with the exception

that we set the hyperparameter λ = 0.1 as in Litterman (1986). To be consistent we chose the

lag length to be p = 4 as for the large Bayesian VAR and compute the vector of forecasts YT+h

iteratively.

3 Data

Our dataset builds on the dataset used in Schumacher (2007) which we have updated to cover

a sample period from 1978Q1 until 2013Q3. It consists of 123 macroeconomic variables in

quarterly frequency that can be grouped into the following categories: composition of GDP

and gross value added by sectors, prices, labor market, financial market, industry, construction,

surveys and miscellaneous. The dataset includes time series of GDP and its components in real

terms as well as their corresponding price indices and price adjusted series of gross value added

for the main sectors of the German economy. Additionally, we consider consumer and producer

price indices and a terms of trade series. Among the labor market data that we take into account

are employment, unemployment, hours worked, productivity, wages and vacancies. The financial

market data contains a number of short- and long-term money market rates and bond yields

as well as several German stock market performance indices. The industry and construction

data are disaggregated and comprise amongst others production, turnover and new orders. In

the surveys category we include sectoral data from the ifo survey on business situation and

expectations, stocks and capacity utilization. Finally, we also consider current account data, a

raw material world market price index and new passenger car registrations.

Most of the data is obtained via Datastream, while the remaining data is directly obtained

from the German Federal Statistical Office. The data is seasonally adjusted. Natural logarithms

are taken and annualized quarter-on-quarter growth rates are computed for time series not

expressed in rates. Following Schumacher (2007) we rescale data which is only available for
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West Germany prior to 1991 to the pan-German series to avoid regime shifts. A detailed data

description is provided in the appendix.

4 Forecasting Approach

We estimate the forecasting models on a moving window containing 60 observations to account

for possible structural breaks in the estimation sample. For shorter estimation windows the

forecasting performance of all models deteriorates. The results obtained for a window of at

least 60 observations are very similar to those under a recursive estimation scheme, where one

additional quarter of data is added to the estimation sample for each forecasting round. For this

reason and because we want to assess the statistical significance of the relative forecasting per-

formance of the respective models using the test of equal unconditional finite-sample predictive

ability (Giacomini and White, 2006), which can only be applied to a moving window forecasting

scheme, we only report results obtained under the rolling window scheme.

To assess the relative and absolute forecasting performance of the models, we first evaluate

the forecasts of four key macroeconomic variables: the annualized quarter-on-quarter growth

rate of GDP, annualized quarterly harmonized CPI inflation, the three-months money market

interest rate and the unemployment rate in percent of the civilian labor force. In section 6 we

extend the analysis to a larger set of variables to check which of the large data methods is suited

best to simultaneously forecast a larger set of core variables.

For the evaluation of the absolute and relative forecasting performance of the different models

we focus on two measures. First, we run Mincer-Zarnowitz regressions and check whether the

forecasts are unbiased and efficient. This allows us to assess the absolute forecasting accuracy

of each model. Secondly, we compute root mean squared prediction errors (RMSE) to evaluate

the relative performance of the different forecasting models.

The forecasts produced by any model should not be systematically higher or lower than the

actual value of the variable to be forecast given that the forecast is based on a symmetric loss

function. Otherwise the forecast errors would be predictable and the forecasts would be biased.9

To test whether the forecasts for each variable i obtained by the different models are optimal, in

the sense that the forecast errors are unpredictable, we compute Mincer-Zarnowitz regressions

(see Mincer and Zarnowitz, 1969). This implies regressing data realizations, yri,t+h, on a constant

and the forecasts, yfi,t+h:

yri,t+h = α+ βyfi,t+h + ǫt,h. (3)

If the intercept estimate α̂ is significantly different from zero, the forecasts are systematically

larger or smaller than the data realizations. A slope estimate β̂ that is significantly different

from one indicates that the forecast is inefficient because it systematically over- or underpredicts

deviations from the mean. This implies that the residual variance in the regression does not

9An exception is the case of an asymmetric loss function that might sometimes be more appropriate for
forecasts for fiscal and monetary policy purposes (see e.g. the discussion in Wieland and Wolters, 2013). Yet even
if forecasts for fiscal or monetary policy purposes are based on asymmetric loss functions, it is still interesting to
check whether forecasts are biased and to assess whether such a bias can be rationalized by assuming a specific
asymmetric loss function.
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equal the variance of the forecast errors. We run the Mincer-Zarnowitz regressions and estimate

Newey-West standard errors with the number of lags equal to the forecast horizon in order to

account for serial correlation of overlapping forecasts. To test for forecast bias we conduct F-tests

of the joint null hypothesis α̂ = 0 and β̂ = 1. The R2 from the Mincer-Zarnowitz regressions

shows whether the forecasts contain information about actual future macroeconomic dynamics.

It can directly be interpreted as the fraction of the variance in the data that is explained by the

forecasts. This fraction is always smaller than 1 since there are shocks and idiosyncrasies that

no economic model can capture.

To assess the relative forecasting accuracy of the different models we compute RMSEs for

each variable i and each forecasting horizon h over the evaluation sample T ∗: RMSEi,h =
√

1
T ∗

∑T ∗

t=1(y
r
i,t+h − yfi,t+h)

2. We report the absolute level of the RMSEs for a simple AR(2)

forecast which we use as a benchmark, while for the remaining models the RMSEs are reported

relative to this benchmark. This implies that a relative RMSE smaller than 1 indicates that

the forecasting performance of a specific model is better than that of the AR(2) benchmark and

vice-versa. To assess the statistical significance of the differences in forecasting performance we

conduct a test of equal unconditional finite-sample predictive ability (see Giacomini and White,

2006) using a symmetric loss function. This test can be applied to nested models, meaning that

one model can be obtained from another model by imposing certain parameter restrictions, as

well as non-nested models. It thus provides a coherent framework for comparing a large number

of different forecasting models as is the case in this paper. Asymptotic p-values are computed

using Newey-West standard errors to account for serial correlation of the forecast errors.

The theoretical properties of the RMSEs crucially depend on the persistence of the time

series. To fix ideas consider the RMSE of a random walk forecast. If a time-series yt follows

a random walk, i.e. yt = yt−1 + ut with ut ∼ iidN(0, 1), then the forecast yT+h|T is given by

yT and the forecast error for horizon h is given by eT+h|T =
∑h

j=1 uT+j. Hence, the population

RMSE is given by
√

E(e2T+h|T ) = h and grows linearly with the forecast horizon. By contrast,

if a time-series follows an AR(1) process yt = γyt−1 + ut with 0 < γ < 1, then, for a known

γ, the h-step ahead forecast error is given by eT+h|T =
∑h

j=1 γ
j−1uT+j and the population

RMSE is given by
√

E(e2T+h|T ) =
√

(1− γ2h)/(1 − γ2) → 1/
√

1− γ2 for h → ∞ (see Del Negro

and Schorfheide, 2013, for a detailed exposition). Thus, if γ is small the RMSE is relatively

flat, while the RMSE increases strongly with horizon h for large γ. For time series with little

persistence such as quarterly output growth and inflation the RMSE can therefore expected to

be flat, whereas it should be increasing with forecast horizon h for time series which are highly

persistent such as interest rates and the unemployment rate.

5 Results for Four Core Variables

In this section we report the results of our forecasting exercise for the following four key macroe-

conomic variables: output growth, CPI inflation, the short-term interest rate and the unem-

ployment rate. We report results for all forecasting models of section 2, except for those which

are strictly dominated by a related alternative from the same model category. For example,
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the BFAVAR always performs much better than the FAVAR, so we do not report results for

the latter. Since the univariate autoregression always performs slightly better when estimated

iteratively, we choose this variant instead of the directly estimated variant.

For each horizon a total of 76 forecasts is computed. As a benchmark, we use an iterative

univariate autoregression with a fixed number of lags p = 2.

5.1 Output Growth

Figure 1 shows the German GDP growth series as well as the forecasts of the AR and those

obtained by one representative variant of each of the three large data methods, namely the

LBVAR, the BFAVAR and the BMA.10 The shaded periods show recessions as dated by the

Economic Cycle Research Institute. It can be clearly seen that the GDP growth series shows

very little persistence and can thus be expected to be very hard to predict. According to the

Bayesian information criterion the optimal number of lags to include in the estimation of the AR

is equal to 1 most of the time.11 Forecasting models that predict a quick return to the average

GDP growth rate should therefore be able to predict German GDP growth more precisely than

other models.

Panel (a) in table 1 shows the absolute RMSEs of the AR(2) benchmark and relative RMSEs

of the other forecasting models for GDP growth. The absolute RMSEs of the AR(2) model are

quite large and flat over the different forecast horizons. This is in line with what can be expected

for forecasts of a time series with low persistence. Table entries in bold indicate that the null

hypothesis of unbiasedness based on the F-test for the two coefficients in the Mincer-Zarnowitz

regression (equation 3) cannot be rejected. This is the case for the LBVAR, the BFAVAR and

the small BVAR for horizons up to h = 3 as well as for the AR and the EWA for two horizons,

respectively. For the remaining models, the estimated constant is larger than zero, but the slope

parameter is smaller than one (and in some cases even negative) indicating that the forecasts

systematically predict less variation than the data actually shows.

The entries in table 1 reveal that the gains in forecasting accuracy for GDP growth obtained

by the three large scale approaches are at best moderate and mostly insignificant. Only the

BFAVAR is able to significantly improve upon the AR(2) benchmark, at least for the one-step

ahead forecast. Among the three large scale approaches, the LBVAR and the BFAVAR yield the

most accurate forecasts. However, the small BVAR performs equally well. For horizons up to

h = 2 or h = 3, respectively, the gains of these three models over the AR(2) benchmark amount

to more than 5%. The three models also slightly outperform the AR with a variable number of

lags, which neither the two model averaging techniques, EWA and BMA, nor the two remaining

factor models, FAAR and DFM, and the unrestricted VAR achieve.

These results are also reflected in figure 1: The AR and the LBVAR forecasts predict a return

to the sample average after only one quarter, while the forecasts obtained by the BFAVAR need

10In this figure and the ones following for the other key variables we plot only two forecasts per year to preserve
the clarity of the figure.

11Comparing the autocorrelation function of US and German GDP growth for a sample from 1978-2013 shows
that there is significant autocorrelation of up to two lags for US GDP growth, while there is no significant
autocorrelation of German GDP growth at all.

11



Univariate Autoregression

1990 1995 2000 2005 2010

−15

−10

−5

0

5

10

Large Bayesian Vector Autoregression

1990 1995 2000 2005 2010

−15

−10

−5

0

5

10

Bayesian Model Averaging

1990 1995 2000 2005 2010

−15

−10

−5

0

5

10

Bayesian Factor Augmented Vector Autoregression

1990 1995 2000 2005 2010

−15

−10

−5

0

5

10

Figure 1: GDP growth forecasts
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Table 1: RMSEs of the different forecasting models

(a) Output growth

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 3.58 0.99 0.93 0.99 0.92• 0.99 0.98 1.01 1.04 0.92

2 3.70 0.98 0.93 1.11 0.93 1.12 0.96 0.95 1.06 0.91

3 3.69 0.98 0.96 1.09 0.94 1.09 0.96 0.97 1.08 0.92

4 3.62 1.00 0.99 1.10 0.96 1.01 1.00 1.03 1.09 0.95

8 3.51 0.99 1.01 1.18• 0.97 1.09 0.96 1.04 1.01 1.00

(b) CPI Inflation Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.49 1.03 0.89• 0.97 0.90• 0.98 0.99 0.97 0.96 0.89•
2 1.37 1.01 0.92• 1.05 0.93 1.04 0.96• 0.93• 1.01 0.91
3 1.35 1.02 0.95 1.05 0.98 1.03 0.98 0.94 1.07 0.94
4 1.37 1.01 0.98 1.10 0.99 1.09 0.98 0.98 1.11 0.94
8 1.45 0.99 0.94 1.14 0.98 1.12 0.95• 0.96 1.14 0.93

(c) Interest Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.36 1.03 0.95 1.01 0.98 1.01 1.00 1.03 1.08 1.01
2 0.70 1.03 0.89• 0.96 0.95 0.97 0.97 0.95 1.04 0.96
3 0.99 1.02 0.88• 0.94 0.94• 0.96 0.99 1.01 1.05 0.94•
4 1.25 1.04 0.89 0.99 0.94 1.02 1.03 1.07 1.06 0.92•
8 1.99 1.08 0.94 1.18 0.90 1.13 1.17 1.06 1.06 0.84•

(d) Unemployment Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.24 1.00 0.99 0.99 1.00 1.00 0.97• 0.97• 1.25• 1.04

2 0.46 1.00 0.93 0.99 0.96 1.01 0.96• 0.96 1.28• 1.00

3 0.68 1.00 0.91 1.02 0.94 1.05 0.99 0.98 1.32 0.99

4 0.88 1.00 0.90 1.05 0.92 1.09 1.03 1.02 1.36 0.97

8 1.46 1.01 0.98 1.10 0.91 1.17 1.31 1.35 1.63 0.98

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each
horizon a total of 76 forecasts is computed. Column 2 shows the absolute RMSEs for the AR(2) benchmark
model, while all other RMSEs are computed relative to the AR(2) RMSEs. The symbols •, •, •, indicate that
the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively, while bold numbers
imply that the null hypothesis of unbiasedness cannot be rejected at the 5 % level.

slight additional adjustment over the following quarters. In contrast to that the BMA yields

less systematic and much more volatile forecasts.

Forecasting GDP Growth with the Ifo Business Climate Index. In addition to the

large scale approaches and the small benchmark models outlined in section 2, we analyze the

predictive content of the ifo business climate index for German GDP growth. The ifo index is

a leading indicator and often referenced to as the most important benchmark when forecasting

German GDP growth (see e.g. Henzel and Rast, 2013).12 We use the ifo index and the subindex

covering business expectations for the next six months and regress GDP growth on a constant

and the respective lagged indicator as in Henzel and Rast (2013): ∆yt = αh + βhifot−h + ǫt,h.

12The ifo index is based on a monthly survey where about 7000 firms report their assessments of the current
business situation and their expectations for the next six months. From these two assessments the overall ifo
business climate index is calculated.
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Figure 2: GDP growth forecasts with ifo leading indicators.

The forecasts for the different horizons which are computed as ∆yT+h = α̂h + β̂hifoT are

shown in figure 2. It can be seen that both ifo indicators lead to more dynamics than the AR

forecasts plotted in figure 1. Table 2 reports the RMSEs of the AR and the two ifo indicators

relative to the AR(2) benchmark. The entries reveal that, at least for the one-quarter ahead

forecast, the ifo expectations index is indeed able to significantly reduce the relative RMSE at

the 10% level.13 However, for higher forecasting horizons the improvements are only minor and

insignificant.

Table 2: RMSEs for AR and ifo leading indicators relative to AR(2) benchmark

Output growth

horizon AR ifo climate ifo expecations

1 0.99 0.94 0.89•

2 0.98 0.95 0.95

3 0.98 0.97 0.98
4 1.00 0.97 0.98
8 0.99 1.02 0.98

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For
each horizon a total of 76 forecasts is computed. The symbols •, •, •, indicate that the relative RMSE is
significantly different from one at the 1, 5, or 10% level, respectively, while bold numbers imply that the null
hypothesis of unbiasedness cannot be rejected at the 5 % level.

13This ifo indicator is also included in the large data set used to compute forecasts for the large scale models, yet
in a disaggregated version. Apparently, it is not given enough weight to in these models to improve considerably
upon the AR forecast.
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Given the extremely low persistence of German GDP growth it does not seem surprising that

the forecasts of all models fail to convey much of information about the actual dynamics of this

variable. Panel (a) in table 3 shows the R2 of the Mincer-Zarnowitz regressions for the different

models. The entries reveal that, with very few exceptions, not even 10 percent of the variance

in the time series is explained by the forecasts of any of the different models. This confirms that

German GDP growth is extremely difficult to predict. Adding more information by using a large

dataset for the forecasting process apparently only leads to marginal improvements in forecasting

accuracy over the AR(2) benchmark. By contrast, the ifo expectations based indicator has more

forecasting power for the one quarter ahead forecast. The R2 for the one-step ahead forecast is

0.18 (not shown in table 3). However, it is close to zero for the higher horizons.

Table 3: R2 of the Mincer-Zarnowitz regressions

(a) Output growth

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.02 0.07 0.15 0.09 0.16 0.03 0.03 0.01 0.10
2 0.01 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.03
3 0.02 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.01
4 0.03 0.06 0.01 0.02 0.00 0.01 0.03 0.01 0.00
8 0.01 0.10 0.02 0.00 0.01 0.03 0.01 0.00 0.01

(b) CPI Inflation Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.04 0.15 0.12 0.12 0.12 0.06 0.08 0.09 0.18
2 0.03 0.05 0.06 0.03 0.06 0.04 0.07 0.03 0.07
3 0.01 0.02 0.04 0.00 0.04 0.03 0.06 0.01 0.04
4 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02
8 0.01 0.04 0.00 0.00 0.00 0.00 0.01 0.06 0.00

(c) Interest Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
2 0.82 0.84 0.82 0.83 0.81 0.84 0.85 0.84 0.84
3 0.66 0.68 0.64 0.67 0.62 0.67 0.65 0.69 0.69
4 0.50 0.49 0.41 0.50 0.38 0.48 0.40 0.55 0.54
8 0.16 0.01 0.00 0.12 0.00 0.09 0.10 0.19 0.22

(d) Unemployment Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.96
2 0.88 0.90 0.89 0.89 0.89 0.89 0.89 0.82 0.88
3 0.76 0.82 0.77 0.80 0.76 0.77 0.78 0.62 0.77
4 0.62 0.74 0.62 0.70 0.61 0.61 0.62 0.41 0.65
8 0.16 0.45 0.14 0.38 0.09 0.00 0.00 0.02 0.27

Forecasting the Great Recession. Several studies, for example Kuzin et al. (2013) and

Timmermann and van Dijk (2013), indicate that the performance based ranking of different fore-

casting models may change considerably during the period of the Great Recession of 2008/2009.

Therefore, in what follows, we take a closer look at whether the three large scale forecasting

methods would have been able to forecast the slump of German GDP growth during the Great

Recession. Figure 3 shows the forecasts of the annualized quarter-on-quarter GDP growth rate
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obtained by the AR, the LBVAR, the BFAVAR, the BMA and the two ifo indicators considered

above computed for the subsample ranging from 2008Q1 to 2009Q2. Generally, the forecasts of

all six models look roughly similar and none of them is able to predict the downturn in GDP

growth in 2008. Once the recession hits, the models also fail to predict a further deepening of the

recession. The only notable exception is the model based on the ifo expectation index: while the
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Figure 3: Great Recession GDP growth forecasts

largest decreases in GDP growth occurred only in the fourth quarter of 2008 and the first quarter

of 2009, business expectations in Germany already dropped largely during the third quarter of

2008. So, we find that the ifo expectation index indeed predicts a negative GDP growth rate of

-3.17% for the first quarter of 2009. However, by construction this model can hardly predict a

further deepening of the recession. As the forecast is computed as ∆yT+h = α̂h + β̂hifoT , the

coefficient β̂h would need to increase strongly with the forecasting horizon h to predict a fur-
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ther deepening of the recession. At this point, it would be interesting to study whether regime

switching models can account for the important information from the ifo business expectations

index before and during recessions more accurately. They would, however, need to detect a

regime switch early14. We leave this exercise for future research.

As for the turning point of the Great Recession in the first quarter of 2009, again, none of

the models is able to predict it. Additionally, once the turning point is reached, the models

underpredict the speed of the recovery.

Table 4: Great Recession RMSEs of forecasting models relative to AR(2) benchmark

horizon AR LBVAR BFAVAR BMA ifo climate ifo expecations

1 0.97 0.92 0.90 1.03 0.93 0.82
2 0.92 0.92 0.89 0.91 0.90 0.89
3 0.92 0.94 0.90 0.91 0.90 0.89
4 0.94 0.97 0.93 0.99 0.91 0.90

Notes: The relative RMSEs are calculated for the subsample of the Great Recession. The first forecast is
computed in 2008Q1, while the last forecasts is computed in 2009Q2. Significance tests are omitted due to the
shortness of the subsample.

The entries in table 4 display the RMSEs of the different forecasting models relative to

the AR(2) benchmark for the Great Recession subsample. The ifo expectation based indicator

clearly outperforms the other models for the one-step ahead forecast. For higher horizons the

models perform more or less equally well.

5.2 Inflation

Figure 4 shows the German CPI inflation rate series as well as the forecasts of the AR and

those obtained by the LBVAR, the BFAVAR and the BMA. The graphs show that German

CPI inflation is more persistent than GDP growth, but still shows many spikes, which will

presumably be hard to predict. The series also displays several changes in the trend which the

LBVAR captures quite well. By contrast, the AR and the BFAVAR forecasts return to the

previous trend inflation levels rather than to the new trend. As for GDP growth, the forecasts

of the BMA model are considerably more volatile in comparison to the remaining models.

Panel (b) in table 1 shows the RMSEs for CPI inflation. The absolute RMSEs shown for

the AR(2) model are less than half of those for GDP growth. Still the persistence of quarterly

CPI inflation is quite low and thus the RMSEs do not increase with the forecast horizon h. The

LBVAR, the BFAVAR and the small BVAR significantly outperform the AR(2) benchmark for

short horizons up to h = 1 or h = 2, respectively, with reductions in the relative RMSEs of up to

11%. For higher horizons they also provide more precise forecasts, but not on a significant level.

These three models are also the only models that yield unbiased forecasts for short horizons up

to h = 2. For the remaining models, the estimated constant in the Mincer-Zarnowitz regressions

14We performed a simple threshold model exercise with the ifo expectation based indicator for the one-
step ahead forecast, where we defined the model to be estimated as ∆yT+h = α1 + β1ifoT I(ifoT ≤ ifoT ) +
β2ifoT I(ifoT > ifoT ) + ǫT with ifoT as the average of the ifo expectations based indicator over the sample
t = 1..., T . However, this did not result in a large gain over the AR(2) benchmark, the relative RMSFE for the
one-step ahead forecast is equal to 0.94.

17



Univariate Autoregression

1990 1995 2000 2005 2010
−2

0

2

4

6

8

10
Large Bayesian Vector Autoregression

1990 1995 2000 2005 2010
−2

0

2

4

6

8

10

Bayesian Model Averaging

1990 1995 2000 2005 2010
−2

0

2

4

6

8

10
Bayesian Factor Augmented Vector Autoregression

1990 1995 2000 2005 2010
−2

0

2

4

6

8

10

Figure 4: Inflation forecasts
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is larger than zero, but the slope parameter is smaller than one. The two model averaging

techniques, BMA and EWA, also show smaller RMSEs than the AR(2) benchmark over all

forecasting horizons. However the reductions are significant only for some cases. By contrast,

the two remaining factor models, FAAR and DFM, as well as the unresticted VAR and the AR

with variable number of lags cannot beat the AR(2) benchmark.

While the results for the LBVAR, the BFAVAR and the small BVAR seem encouraging at

first sight, we find that the informational content of the forecasts obtained by all models is weak.

Panel (b) in table 3 shows the R2 from Mincer-Zarnowitz regressions. It exceeds 10 percent only

for the one quarter ahead forecasts for the large and the small BVAR as well as the different

factor models, while for all other horizons and models the values are close to zero.

5.3 Interest Rate

Figure 5 shows the 3-months money market rate series as well as the forecasts of the AR and those

obtained by the LBVAR, the BFAVAR and the BMA. This time series is much more persistent

than GDP growth or CPI inflation. Still the forecasting models have to predict some trend

changes which might pose a difficulty for most models. In the evaluation sample the interest

rate shows an overall downward trend with two temporary increases before the 2001 recession

and the Great Recession in 2008. The AR, BFAVAR and BMA systematically overpredict the

interest rate until about 2005. Interestingly, the LBVAR is able to adjust very quickly to the

changes in the trend. Only at turning points the forecasts of the LBVAR are imprecise, the

model captures the turning points only after they actually occurred.

Panel (c) in table 1 shows the RMSEs for the short term interest rate. The absolute RMSEs

for the AR(2) model are much smaller than those for GDP growth and CPI inflation for short

horizons but they increase with the forecast horizon reflecting the high persistence of the time

series. For h = 8 the absolute RMSE of the AR(2) is even higher than that for CPI inflation

which indicates that the model has problems to capture the downward trend of the interest rate.

Again, the LBVAR, the BFAVAR and the small BVAR yield significantly better forecasts

than the AR(2) benchmark for one or several forecast horizons. The forecasts of the other factor

models, FAAR and DFM, are also slightly better than the AR(2) forecasts for several forecasting

horizons, but not on a statistically significant level. Yet, together with the LBVAR, they are the

only models that produce unbiased forecasts for horizons up to h = 4. The estimated constants in

the Mincer-Zarnowitz regressions increase with the forecast horizon while the estimated slopes

decrease with the forecast horizon. Thus, the models are able to predict some of the actual

variation in the data for short horizons, while the longer term forecasts equal the average in the

estimation sample.

Panel (c) in table 3 shows that the interest rate forecasts of all models are very informative.

For h = 1 the forecasts of each model can explain 95% of the variance in the interest rate series,

while for forecasts one year ahead still almost half of the variance can be explained by most

model forecasts. This is certainly due to the high persistence and the extremely small variation

in the interest rate series. For long-term forecasts, however, the R2 drops considerably reflecting

that the models have difficulties to capture the overall downward trend in interest rates.
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Figure 5: Interest rate forecasts
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5.4 Unemployment Rate

Figure 6 shows the German unemployment rate series as well as the forecasts of the AR and those

obtained by the LBVAR, the BFAVAR and the BMA. The persistence of the unemployment

rate series is very high, similar to that of the short-term interest rate. The unemployment

rate, however, does not show one single trend, but increases until 1998, decreases temporarily

until 2001, increases again temporarily until 2005 and falls from there until the end of the

sample. Due to these various trend changes, no model systematically over- or underestimates

the unemployment rate. The AR and BMA forecasts even get most of the turning points right,

while the LBVAR has more difficulties. At least it adjusts relatively quickly to the new trend

after a turning point. The BFAVAR predictions resemble those of a random walk, which indicates

that the model is not able to capture the most important dynamics in the unemployment rate.

These observations are reflected in the relative RMSEs in panel (d) of table 1. The absolute

RMSEs for the AR(2) are smaller than those for the other three key variables and they increase

with the forecast horizon owing to the high persistence of the unemployment rate series. The

AR forecasts are quite good as shown in figure 6 and the other models perform just as good,

but not better. The only exception are the EWA and the BMA which reduce relative RMSEs

significantly, at least for the one step ahead forecast. One reason for this might be that the BMA

predicts turning points even better than the AR as indicated in figure 6. The unrestricted VAR

produces significantly less accurate forecasts than the AR(2) benchmark. With a few exceptions

for h = 8, all forecasts are unbiased which reflects that the unemployment rate lies in a similar

range in the estimation and the evaluation sample and shows no clear overall trend.

As for the interest rate, we find that the explanatory power of all forecasts is extremely high

for short forecasting horizons as shown in panel (d) of table 3. This can again be attributed

to the high persistence in the unemployment rate series. The forecasts of the LBVAR and the

BFAVAR for h = 8 can even explain about 40% of the data variation, while the other forecasting

models have much smaller information content.

5.5 Robustness with Respect to Misspecification

In order to check to what degree possible model misspecification affects the relative forecasting

performance of the different models, we repeat the forecasting exercise of the previous section

with an optimized specification based on ex post information of each forecasting model. So

instead of specifying the different models based on various information criteria, in this section,

we choose the ex post best performing specification for each model for the evaluation of the

relative forecasting performance of the different models.

We report the results of this exercise relative to the AR(2) benchmark, which allows for a

direct comparison of each model’s performance with its optimized specification relative to that

based on information criteria as reported in table 1. Thereby we can additionally check which of

the different forecasting models yield similarly accurate forecasts in the quasi real-time exercise

and with an ex post optimized specification and are thus robust against model misspecification.

We obtain the optimized specification of each model by computing a variety of different

specifications for each model and choosing the one that yields ex post the best forecasting
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performance. For example, for the FAAR the number of static factors r as well as the number of

lags p have to be specified. After defining a range for each of these parameters, i.e. r = 1, ..., rmax

and p = 1, ..., pmax, we estimate the FAAR and compute forecats for each possible combination

of these parameters. We then choose the specification that yields ex post the highest forecasting

accuracy as the optimized specification for the FAAR model. Table 5 shows the ranges of the

various parameters of the different forecasting models that we consider.

Table 5: Parameter range for forecasting models

parameter range forecasting model

number of lags p 1, 2, ..., 4 all forecasting models
degree of shrinkage λ 0.01, 0.02, ..., 0.1 LBVAR
degree of shrinkage φ 1, 1.1, ..., 2 BMA
number of static factors r 1, 2, ..., 10 FAAR, FAVAR, BFAVAR
number of dynamic factors q 1, 2, ..., 10 DFM
number of lags of the dynamic factors s 1, 2, ..., 4 DFM

We follow Schumacher (2007) and distinguish the following two approaches: performance

based model selection, time-varying model (PBTV) and performance based model selection, con-

stant model (PBC). With PBTV we divide the evaluation sample into subsamples covering 4

quarters each. For each of these subsamples we select the specification for each forecasting model

and for each forecasting horizon that minimizes the respective subsample MSFE. By contrast,

with PBC we choose the specification for each model that minimizes the MSFE over the whole

evaluation sample for each horizon.

In table 6 we report the results of this exercise for horizons h = 1, 4 and 8. As the entries

in the upper part of the table indicate, with PBC the relative performance of the different

forecasting models is similar to what we found before. The LBVAR and the BFAVAR still provide

the most precise forecasts in most cases, however, the gains in accuracy over the remaining

large scale approaches are slightly smaller. This picture changes considerably with PBTV, as

the entries in the lower part of table 6 reveal. With PBTV the DFM clearly outperforms all

remaining models by far. For output growth and the interest rate, the reduction of the relative

RMSE obtained by the DFM amounts to more than 50%, at least for the one step ahead forecast.

By contrast, the LBVAR which now performs slightly better than the BFAVAR achieves at best

a gain of 30%. Moreover, the FAAR is able to yield forecasts that are similarly accurate as those

of the LBVAR, while the two model averaging techniques, EWA and BMA, perform slightly less

accurate than the BFAVAR.

Comparing the results in table 6 to those reported in table 1 gives rise to the following

observations. First, both performance based model selection approaches generally increase the

precision of all forecasting models—which of course is not surprising given that these approaches

rely on out of sample information. However, while overall PBC leads only to modest gains

over the quasi real-time forecasts, the gains obtained with PBTV are very large and, in some

cases, even amount to almost 60% (for the DFM, for example). Since the PBC approach

chooses the optimal specification separately for each horizon, yet is restricted to a constant

model specification, this result clearly indicates that the optimal specification of each forecasting
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Table 6: RMSEs of forecasting models relative to AR(2) benchmark, PBC and PBTV

Performance based model selection, constant model

(a) Output growth

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.99 0.90• 0.92 0.90• 0.87 0.98• 0.99 1.04 0.92

4 0.97 0.97 1.02 0.96 0.97 0.99 1.00 1.09 0.95

8 0.97 0.98 1.00 0.97 1.00 0.96 0.96 1.01 1.00

(b) CPI Inflation Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.97 0.87• 0.96 0.88• 0.96 0.94• 0.94• 0.96 0.88•
4 0.98 0.94 1.03 0.93• 1.01 0.97 0.95 1.11 0.94
8 0.98 0.93 1.01 0.93• 0.97 0.95 0.93• 1.14 0.93

(c) Interest Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.00 0.82• 0.90 0.92• 0.85 0.97 0.99 1.02 1.01
4 0.99 0.85• 0.92 0.89• 0.85• 0.99 1.00 1.06 0.92•
8 0.92 0.90 0.99 0.88• 1.01 1.12 1.01 1.06 0.84•

(d) Unemployment Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.00 0.94 0.95 0.95 0.92 0.97• 0.96• 1.07 1.04

4 1.00 0.91 0.94 0.86• 0.96 1.03 0.95 1.36 0.97

8 0.94 0.94 0.91 0.87 0.95 1.25 1.27 1.63 0.98

Performance based model selection, time-varying model

(a) Output growth

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.94• 0.83• 0.76• 0.85• 0.46• 0.94• 0.94• 0.97 0.91

4 0.93• 0.91• 0.89• 0.95 0.76 0.98 0.98 1.08 0.94•

8 0.96• 0.92• 0.92• 0.96 0.82 0.94 0.94 0.99 0.99

(b) CPI Inflation Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.94• 0.78• 0.77• 0.82• 0.63• 0.92• 0.90• 0.92 0.86•
4 0.95• 0.79• 0.84• 0.90• 0.68 0.90• 0.87• 1.03 0.92
8 0.94• 0.73• 0.77• 0.91• 0.59 0.90• 0.87• 1.14 0.92

(c) Interest Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.93• 0.73• 0.72• 0.87• 0.45 0.90• 0.86• 0.95 1.00
4 0.85• 0.70• 0.73• 0.85• 0.55• 0.88• 0.88• 0.98 0.89•
8 0.78• 0.68• 0.84• 0.83• 0.61 1.02 0.91 1.04 0.80•

(d) Unemployment Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.94 0.88 0.80• 0.90 0.54• 0.90 0.89 0.95 1.03

4 0.85• 0.75• 0.73• 0.80• 0.60 0.90• 0.85• 1.22 0.94

8 0.81• 0.81 0.76• 0.82• 0.48• 1.18 1.12 1.52 0.95

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting 1992Q4. For
each horizon a total of 76 forecasts are computed. The symbols •, •, •, indicate that the relative RMSE
is significantly different from one at the 1, 5, or 10% level, respectively, while bold numbers imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level.
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model indeed changes over time.

Focussing on the comparison of quasi real-time forecasts to those obtained with PBTV, we

can divide the different models into three groups according to their degree of robustness of

forecasting performance against model misspecification.

First, for the small BVAR, the BFAVAR, and both model averaging techniques, EWA and

BMA, model misspecification has not a large impact on the models’ forecasting performance.

The optimally specified models reduce the RMSE by only about 10% relative to the quasi real-

time RMSEs.

Second, the LBVAR and FAAR are subject to a moderate degree of model misspecification.

Their forecasting performance would improve by about 20% if one could optimally specify the

models in real-time. For the LBVAR, we find that in the PBTV specification the degree of

shrinkage λ varies strongly over time, while in the quasi real-time specification λ is very stable

over time. In the same vein, we find that in the PBTV specification the optimal number of

static factors r for the FAAR varies largely over time, while the number of factors chosen via

the information criterion of Bai and Ng (2002) in the quasi real-time exercise is rather stable.

Third, the quasi real-time forecasts of the DFM are subject to the largest degree of model

misspecification. Choosing the optimal specification rather than that based on information

criteria leads to a considerable improvement the model’s forecasting performance. One reason

for the large degree of misspecification of the DFM in real-time is that the optimal number

of dynamic factors q for each of the four key variables seems to vary substantially for different

forecasting horizons. Further, it turns out that the number of dynamic factors q chosen according

to the Bai and Ng (2007) information criterion is always considerably smaller than the ex post

optimal number of dynamic factors.15

Real-Time Performance Based Model Selection To check whether performance based

model selection can increase the accuracy of the different forecasting models also in a quasi

real-time exercise, we specify the models based on past forecasting performance rather than

on the various information criteria. We call this approach performance based model selection,

real time (PBRT). With PBRT, we evaluate the performance of the various specifications of

the different forecasting models over a subevaluation sample t = T − seval + 1, ..., T . The best

specification of each forecasting model for each horizon is then used to estimate the final model

with information up to T and to compute forecasts for T + h.

To be consistent, we set the length of the subevaluation sample seval equal to 4 quarters

and estimate the various specifications of the different forecasting models for the subsample

evaluation as well as for the final forecast over a rolling window of 60 quarters.16 In table 7

15Recall that any dynamic factor model with q dynamic factors can be rewritten as a static factor model with
r = q(s+1) static factors, where s is the number of lags in the dynamic factors. The Bai and Ng (2007) information
criterion takes the optimal number of static factors r (obtained with the information criterion proposed by Bai
and Ng (2002) with rmax) as well as a maximum number of lags smax and a maximum number of dynamic factors
qmax as given when optimizing over q. By contrast, for the performance based model specification we proceed
just the other way around. Specifically, we define qmax and smax and chose the best performing q-s-specification.
The resulting number of static factors r can thus easily exceed rmax. Therefore our approach allows for a lot more
dynamics in the dynamic factors which apparently increases the DFM’s forecasting performance considerably.

16This implies that we cannot start to compute forecasts in 1992Q4 as in the previous analysis. Instead, we
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Table 7: RMSEs of different forecasting models relative to AR(2) benchmark, PBRT and IC

Performance based model selection, real-time

(a) Output growth

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.99 0.95 1.09 0.90• 1.19 1.01 1.01 1.07 0.91

4 0.99 0.98 1.11• 0.96 1.56• 1.00 1.01 1.62• 0.94

8 0.98 1.03 1.34• 0.98 1.75• 1.05 0.96 7.66 1.00

(b) CPI Inflation Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.99 0.89• 1.03 0.89• 1.30• 0.96• 0.96 1.10 0.92•

4 1.01 1.03 1.23• 0.99 1.54• 0.99 1.05 1.32• 0.99
8 1.01 1.08 1.50 0.98 1.93• 0.97 0.97 4.36• 1.02

(c) Interest Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.12 0.91 1.04 0.93 1.13 0.99 1.03 1.07 0.99

4 1.01 0.93 1.00 0.91• 1.20 1.00 1.08 1.75 0.94

8 0.97 1.05 1.23 0.90 2.39 1.20 1.06 8.77 0.85

(d) Unemployment Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.03 0.97 1.08 0.93 1.03 0.99 1.01 1.09 1.02

4 1.06 0.95 1.21 0.86• 1.26• 1.04 0.97 1.48 0.97

8 1.20• 1.27• 0.99 0.91 1.21 1.46 1.32 6.22 0.96

Information criteria based model selection

(a) Output growth

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 0.98 0.92 0.96 0.90• 0.96 0.99 1.01 1.03 0.91

4 0.97 0.98 1.07 0.96 1.00 1.00 1.02 1.10 0.94

8 0.97 1.01 1.13• 0.97 1.02 0.95 1.00 0.99 0.99

(b) CPI Inflation Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.03 0.89• 0.96 0.89• 0.96 0.99 0.96 0.99 0.93
4 1.02• 0.99 1.13 0.99 1.11 0.99 1.00 1.18 0.98
8 1.00 0.99 1.17 0.98• 1.11 0.96 0.96 1.29 1.01

(c) Interest Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.04 0.97 0.97 0.94 1.03 1.01 1.04 1.08• 0.98

4 1.08 0.99 1.04 0.93 1.09 1.07 1.14 1.14 0.91

8 1.10 1.08 1.29 0.91 1.24 1.25• 1.11 1.19 0.83•

(d) Unemployment Rate

horizon AR LBVAR FAAR BFAVAR DFM EWA BMA VAR BVAR

1 1.00 0.97 0.99 0.97 1.00 0.97• 0.97• 1.24• 1.01

4 1.00 0.91 1.09 0.91 1.14 1.03 1.03 1.41 0.94

8 1.00 1.01 1.09 0.93 1.18 1.35 1.40 1.71 0.92

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting 1996Q3. For
each horizon a total of 61 forecasts is computed. The symbols •, •, •, indicate that the relative RMSE is
significantly different from one at the 1, 5, or 10% level, respectively, while bold numbers imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level.
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we report the results of this exercise, again relative to the AR(2) benchmark. We additionally

show the relative RMSEs of the different forecasting models with information criteria based

model selection for the same evaluation sample to facilitate the direct comparison of the two

approaches.

The results indicate that the reduction of the relative RMSEs found for the PBTV approach

is not attainable in real-time. The relative RMSEs of the PBRT exercise are mostly even larger

than those obtained with model specifications based on information criteria. Especially for the

two factor models, FAAR and DFM, the forecasting precision deteriorates considerably with

PBRT. By contrast, the LBVAR and the BFAVAR seem to be quite robust against different

model specification approaches. Among all the forecasting models considered, they provide the

most accurate forecasts in most cases.

As for why the PBRT approach fails to produce results that are comparable to those which

can be achieved with PBTV, there are several possibilities. First, past forecasting performance

might not be a good indicator for future forecasting performance if shocks occur, even for samples

that are temporally not far apart. Second, the length of the subevaluation sample might simply

be too short. Indeed, we find that we can slightly improve the performance of all forecasting

models with PBRT by setting seval = 8 rather than seval = 4.17 Further, for higher horizons

the time gap between T and the periods in which the forecasts for the subevaluation sample

t = T − seval + 1, ..., T are estimated might simply be too large so that the model specification

that produces the most accurate high-horizon forecasts during the subevaluation sample is no

longer optimal for forecasts starting in period T .

6 Forecasting a Larger Number of Macroeconomic Variables

Often forecasters are interested in the forecasts of a larger number of variables than the four

key variables considered so far. In table 8, panel (a)-(l), we show the average of the relative

RMSEs for the different forecasting models for eleven core macroeconomic variables. Besides

those considered thus far, this includes variables such as private consumption, machinery and

equipment investment, wages, industrial production, PPI inflation, a ten year interest rate and

the current account balance. To asses the relative short- and long-term forecasting performance

of the models, the average RMSEs are computed over the forecast horizons h = 1, ..., 4 and

h = 1, ..., 8, respectively. In the upper part of table 8, we additionally summarize the short- and

long term average RMSEs for each model over all eleven variables under consideration.

The results confirm our findings from section 5. Of all forecasting models considered, the

LBVAR and the BFAVAR obtain the largest gains over the AR(2) benchmark in terms of short-

as well as long-term forecasting performance for all eleven variables. Both model averaging tech-

niques, EWA and BMA, also slightly outperform the benchmark for short forecasting horizons,

while they perform just as good over all horizons up to h = 8. By contrast, the two remaining

choose 1996Q3 as starting point which leaves us with a total of 61 forecasts to evaluate for each forecasting
horizon.

17Increasing the length of the subevaluation sample always comes at the cost of loosing data for the evaluation
of the final forecasts in our exercise. Although this does no play a role in an actual real-time forecasting situation,
the number of observations is typically limited here as well which is a clear constraint to the PBRT approach.
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Table 8: Average RMSEs relative to AR(2) benchmark

Average over all 11 variables

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 4.70 1.01 0.93 1.01 0.93 1.00 0.96 0.97
1-8 5.22 1.00 0.93 1.05 0.92 1.04 0.98 0.99

(a) Output growth

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 3.65 0.99 0.95 1.07 0.94 1.06 0.98 0.99
1-8 3.61 0.99 0.98 1.14 0.95 1.10 0.97 0.99

(b) CPI Inflation Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 1.39 1.02 0.94 1.04 0.95 1.05 0.98 0.96
1-8 1.41 1.01 0.94 1.07 0.96 1.06 0.97 0.95

(c) Interest Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 0.82 1.03 0.90 0.98 0.95 0.97 1.00 1.02
1-8 1.29 1.05 0.91 1.04 0.93 1.03 1.05 1.05

(d) Unemployment Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 0.57 1.00 0.94 1.01 0.96 1.04 0.99 0.98
1-8 0.92 1.00 0.94 1.05 0.93 1.11 1.09 1.10

(e) Private Consumption

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 2.78 1.06 0.97 1.12 0.98 1.08 1.00 1.01
1-8 2.71 1.04 0.97 1.26 0.98 1.21 1.02 1.02

(f) Machinery and Equipment Investment

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 14.13 1.00 0.91 0.99 0.91 0.99 0.95 0.94
1-8 14.24 1.00 0.94 1.02 0.91 1.01 0.95 0.98

(g) Wages

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 2.81 1.00 0.87 0.97 0.91 0.91 0.94 0.93
1-8 2.89 1.00 0.89 1.03 0.94 0.98 0.96 0.95

(h) Industrial Production

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 15.46 0.96 0.76 0.79 0.76 0.81 0.81 0.83
1-8 18.22 0.80 0.67 0.69 0.66 0.69 0.69 0.70

(j) PPI Inflation Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 3.73 0.99 0.99 0.93 0.99 0.94 0.95 0.94
1-8 3.78 0.99 1.00 0.99 0.99 0.99 0.97 0.99

(k) Long Term Interest Rate

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 0.62 1.04 0.95 1.13 0.94 1.11 1.02 1.00
1-8 0.89 1.05 0.91 1.17 0.88 1.15 1.04 1.02

(l) Current Account

horizon AR(2) AR LBVAR FAAR BFAVAR DFM EWA BMA

1-4 5.70 1.02 1.02 1.11 1.00 1.08 1.01 1.04
1-8 7.49 1.03 1.04 1.14 1.00 1.13 1.03 1.09

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each
horizon a total of 76 forecasts is computed. Column 2 shows the absolute RMSEs for the AR(2) benchmark
model, while all other RMSEs are computed relative to the AR(2) RMSEs.
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factor models, FAAR and DFM, perform just as good as the AR(2) benchmark for short-term

forecasts, but yield less precise forecasts when all horizons up to h = 8 are taken into account.

This pattern mostly continues to hold true when analysing each of the eleven variables under

consideration separately. In most cases either the LBVAR or the BAVAR perform best, while

either the FAAR or the DFM performs worst. However, there are some exceptions. For example,

the forecasts of the PPI inflation rate (panel j) obtained by the LBVAR and the BFAVAR are

the least accurate ones, at least for short horizons. Further, for the short term interest rate

(panel c) the two factor models FAAR and DFM actually perform slightly better than the two

model averaging approaches EWA and BMA, at least in the short run.

The average relative RMSEs also reveal that there are considerable differences between the

variables under consideration when it comes to the size of the gains in forecasting accuracy of

the best performing large scale methods over the AR(2) benchmark. The largest gain amounts

to 34% and is obtained by the BFAVAR for industrial production for long forecasting horizons.

By contrast, for the current account balance, not even the best performing large scale methods,

the LBVAR and the BFAVAR, can actually beat the benchmark. However, in most cases either

of the two models (or both) can achieve a moderate reduction in the average relative RMSEs

over the AR(2) benchmark.

The detailed tables in the appendix contain the results for each model and all variables.

They show that many variables under consideration are characterized by very low persistence

and thus their predictable component is presumably only small. Among the variables with

higher persistence there might possibly exist high collinearity so that even for these variables

multivariate forecasting models can only yield modest gains over univariate forecasting models.

It remains, however, to be explored whether the usage of one coherent forecasting model

like a LBVAR is advantageous in terms of the interpretation of the forecasts of a larger number

of variables. After all, the other models include different predictors to forecast the different

variables, so it might be more difficult to come up with an interpretation of the forecasts that

is coherent for the whole set of variables that forecasters are typically interested in.

7 Conclusion

We have studied three different approaches that are able to use the information from a large

dataset consisting of 123 variables in quarterly frequency to forecast eleven German core macroe-

conomic time series. We find that, overall, the large Bayesian vector autoregression (LBVAR)

and the Bayesian factor augmented vector autoregression (BFAVAR) perform best and generally

yield more accurate forecasts than an AR(2) benchmark model and the other large scale fore-

casting methods. The LBVAR and the BFAVAR are also the only models that yield unbiased

forecasts for a set of four key variables, at least for short horizons.

For the prediction of output growth, we have additionally compared the forecasting perfor-

mance of the different large scale models to that of different versions of the ifo indicator and

we have studied the forecasting performance of the various models during the Great Recession.

We find that while the ifo expectations indicator yields some improvement in output growth

forecasts over the whole sample, none of the models is able to forecast the Great Recession.
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We also checked whether the low forecasting performance of some models is caused by model

misspecification. This is indeed the case. In particular, an optimally specified dynamic factor

model (DFM) could in principle produce the most accurate forecasts among all models consid-

ered. However, this performance is unattainable in a real-time forecasting application, whether

the model specification is based on information criteria or on past forecasting performance.

Regarding the size of the gains in forecasting accuracy over the AR(2) benchmark obtained

with the LBVAR and the BFAVAR in our quasi real-time exercise, we find considerable differ-

ences between the various variables. While for industrial production, for example, the reduction

of the average relative root mean squared prediction error over forecast horizons up to eight

quarters ahead amounts to more than 30%, the gains rarely exceed 10% in most other cases.

One reason for this might be that some time series show very little persistence and are thus

very hard to predict by univariate as well as multivariate forecasting models. We additionally

check the informational content of the forecasts as measured by the R2 of Mincer-Zarnowitz

regressions and find that it is very weak in most cases, except for highly persistent variables.

Yet, even for time series with more persistence, the high collinearity in the large dataset seems

to prevent large gains from the large-scale multivariate forecasting models over the simple AR(2)

benchmark.

Still, when forecasters are interested in simultaneously predicting a larger number of vari-

ables, large-scale forecasting models have the advantage that they can be used to coherently

forecast many variables. This might be an advantage also when it comes to the interpretation

of forecasts.
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Appendix A: Data Description

Our dataset consists of 123 macroeconomic time series in quarterly frequency covering the period

from 1978Q1 until 2013Q3. Below we provide a detailed description of the dataset that reads

as follows:

• Number of the series

• Code of the series (as used in the respective original source, if available)

• Series label

• Source of the series

– FSO: Federal Statistical Office Germany

(a) Statistisches Bundesamt, Volkswirtschaftliche Gesamtrechnungen 1970 bis 1991,

Fachserie 18 Reihe S.28

(b) Statistisches Bundesamt, Volkswirtschaftliche Gesamtrechnungen 3. Vierteljahr

2013, Fachserie 18 Reihe 1.3

(c) Statistisches Bundesamt, Bauhauptgewerbe (query at unit E206)

– DS: Datastream

– CS: Schumacher (2007)

• Transformation of the series

– WG: prior 1991 West-German series rescaled to Pan-German series

– log: natural logarithm

– SA: series seasonally adjusted in EViews718 (all other series were already seasonally

adjusted in the original data source).

18Census X12, multiplicative (additive for series with negative numbers), TrendFilter: Auto, no ARIMA, no
data transformation
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No. Code Code Name of Series Source Source Transformation
prior 1991 post 1991 prior 1991 post 1991 WG log SA

Use of GDP and gross value added
1 1.1 BDGDP...D Real gross domestic product FSO(a) DS x x
2 2.3.2 BDCNPER.D Real private consumption FSO(a) DS x x
3 2.3.2 BDCNGOV.D Real government consumption FSO(a) DS x x
4 2.3.5 BDGCMAC.D Gross fixed capital formation: machinery and equipment FSO(a) DS x x
5 2.3.5 BDGCCON.D Gross fixed capital formation: construction FSO(a) DS x x
6 2.3.5 BDGCINT.D Gross fixed capital formation: other FSO(a) DS x x
7 2.3.10 BDEXNGS.D Exports FSO(a) DS x x
8 2.3.10 BDIMNGS.D Imports FSO(a) DS x x
9 2.2 BDVAPAAFE Gross value added: mining and fishery FSO(a) DS x x
10 2.2 BDVAPAECE Gross value added: producing sector excluding construction FSO(a) DS x x
11 2.2 BDVAPACND Gross value added: construction FSO(a) DS x x
12 2.2 BDVAPATFD Gross value added: wholesale and retail trade, restaurants, hotels, transport FSO(a) DS x x
13 2.2 Gross value added: financing and rents* x x
13 2.2 BDVAPAICD/B FSO(a) DS
13 2.2 BDVAPAFID/B FSO(a) DS
13 2.2 BDVAPARED/B FSO(a) DS
13 2.2 BDVAPASTD/B FSO(a) DS
14 2.2 Gross value added: services** x x
14 2.2 BDVAPAAHD/B FSO(a) DS
14 2.2 BDVAPAOSD/B FSO(a) DS

Prices
15 JQ0730 BDGDPIPDE Deflator of GDP CS DS x x
16 JQ0059 BDOCMP06E Deflator of private consumption expenditure CS DS x x
17 JQ0060 BDOEXP02E Deflator of government consumption expenditure CS DS x x
18 JQ006 BDGCMAC,B Deflator of machinery and equipment CS DS x x
19 JQ0065 BDIPDCNSE Deflator of construction CS DS x x
20 BDTOTPRCF BDTOTPRCF Terms of trade DS DS x x x
21 JQ0214 BDEXPPRCF Export prices CS DS x x x
22 JQ0205 BDIMPPRCF Import prices CS DS x x x
23 ECO:DEU:CPIH/Q BDCONPRCE Consumer price index CS DS x x
24 BDPROPRCF BDPROPRCF Producer price index DS DS x x

Labor market
25 2.1.6 2.1.6 Residents FSO(a) FSO(b) x x
26 2.1.6 2.1.6 Labour force FSO(a) FSO(b) x x
27 2.1.6 2.1.6 Unemployed FSO(a) FSO(b) x x
28 2.1.6 2.1.6 Employees and self-employed FSO(a) FSO(b) x x
29 2.1.6 2.1.6 Employees FSO(a) FSO(b) x x
30 2.1.6 2.1.6 Self-employed FSO(a) FSO(b) x x
31 2.1.7 2.1.7 Volume of work, employees and self-employed FSO(a) FSO(b) x x
32 2.1.7 2.1.7 Volume of work, employees FSO(a) FSO(b) x x
33 2.1.7 2.1.7 Hours, employees and self-employed FSO(a) FSO(b) x x
34 2.1.7 2.1.7 Hours, employees FSO(a) FSO(b) x x
35 2.1.8 2.1.8 Productivity, per employee FSO(a) FSO(b) x x
36 2.1.8 2.1.8 Productivity, per hour FSO(a) FSO(b) x x
37 2.1.8 2.1.8 Wages and salaries per employee FSO(a) FSO(b) x x
38 2.1.8 2.1.8 Wages and salaries per hour FSO(a) FSO(b) x x
39 2.1.4 2.1.4 Wages and salaries, excluding employers social security contributions FSO(a) FSO(b) x x
40 2.1.8 2.1.8 Unit labour costs, per production unit FSO(a) FSO(b) x x
41 2.1.8 2.1.8 Unit labour costs, per production unit, hourly basis FSO(a) FSO(b) x x
42 GS1513 BDUSC,04O(BDUSCC04O) Vacancies CS DS x x
43 US02CC BDUSCC02Q Unemployment rate CS DS x

* Series constructed as average of four real series, each weighted with corresponding nominal series.
**Series constructed as average of two real series, each weighted with corresponding nominal series.
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No. Code Code Name of Series Source Source Transformation
prior 1991 post 1991 prior 1991 post 1991 WG log SA

Financial
44 BDSU0101,BDSU0304R BDSU0101,BDSU0304R Money market rate, overnight deposits DS DS
45 BDSU0104,BDSU0310R BDSU0104,BDSU0310R Money market rate, 1 months deposits DS DS
46 BDSU0107,BDSU0316R BDSU0107,BDSU0316R Money market rate, 3 months deposits DS DS
47 BDWU0898 BDWU0898 Bond yields with average rest maturity from 1 to 2 years DS DS
48 BDWU0899 BDWU0899 Bond yields with average rest maturity from 2 to 3 years DS DS
49 BDWU0900 BDWU0900 Bond yields with average rest maturity from 3 to 4 years DS DS
50 BDWU0901 BDWU0901 Bond yields with average rest maturity from 4 to 5 years DS DS
51 BDWU0902 BDWU0902 Bond yields with average rest maturity from 5 to 6 years DS DS
52 BDWU0903 BDWU0903 Bond yields with average rest maturity from 6 to 7 years DS DS
53 BDWU8606 BDWU8606 Bond yields with average rest maturity from 7 to 8 years DS DS
54 BDWU8607 BDWU8607 Bond yields with average rest maturity from 8 to 9 years DS DS
55 BDWU8608 BDWU8608 Bond yields with average rest maturity from 9 to 10 years DS DS
56 BDWU001AA BDWU001AA Stock prices: CDAX DS DS x
57 BDWU3141A BDWU3141A Stock prices: DAX DS DS x
58 BDWU035AA BDWU035AA Stock prices: REX DS DS x

Misc
59 BDEA4001B BDEA4001B Current account: goods trade DS DS
60 BDEA4100B BDEA4100B Current account: services DS DS
61 BDEA4170B BDEA4170B Current account: factor income DS DS
62 BDEA4220B BDEA4220B Current account: transfers DS DS
63 BDHWWAINF BDHWWAINF HWWA raw material price index DS DS x x
64 BDQSLI12G BDQSLI12G New car registrations DS DS x

Industry
65 BDUSNA04G Production: intermediate goods industry CS DS x x
66 BDUSNA05G Production: capital goods industry CS DS x x
67 BDUSNI67G Production: durable and non-durable consumer goods industry CS DS x x
68 BDUSNA39G Production: mechanical engineering CS DS x x
69 BDUSNA42G Production: electrical engineering CS DS x x
70 BDUSNA50G Production: vehicle engineering CS DS x x
71 BDSTDCAPG Export turnover: intermediate goods industry CS DS x x x
72 BDSTFINTG Domestic turnover: intermediate goods industry CS DS x x x
73 BDSTFCAPG Export turnover: capital goods industry CS DS x x x
74 BDSTDCONG Domestic turnover: capital goods industry CS DS x x x
75 BDSTFCONG Export turnover: durable and non-durable consumer goods industry CS DS x x x
76 BDSTDMYEG Domestic turnover: durable and non-durable consumer goods industry CS DS x x x
77 BDSTFMYEG Export turnover: mechanical engineering CS DS x x x
78 BDSTDCEOG Domestic turnover: mechanical engineering CS DS x x x
79 BDSTFCEOG Export turnover: electrical engineering industry CS DS x x x
80 BDSTFCEOG Domestic turnover: electrical engineering industry CS DS x x x
81 BDSTFCEOG Export turnover: vehicle engineering industry CS DS x x x
82 BDSTFVEMG Domestic turnover: vehicle engineering industry CS DS x x x
83 BDDBPORDG Orders received: intermediate goods industry from domestic market CS DS x x x
84 BDOBPORDG Orders received: intermediate goods industry from abroad CS DS x x x
85 BDDCPORDG Orders received: capital goods industry from domestic market CS DS x x x
86 BDOCPORDG Orders received: capital goods industry from abroad CS DS x x x
87 BDDCNORDG Orders received: consumer goods industry from domestic market CS DS x x x
88 BDOCNORDG Orders received: consumer goods industry from abroad CS DS x x x
89 BDNODMYEG Orders received: mechanical engineering industry from domestic market CS DS x x x
90 BDNOFMYEG Orders received: mechanical engineering industry from abroad CS DS x x x
91 BDUSC587G Orders received: electrical engineering industry from domestic market CS DS x x x
92 BDUSC588G Orders received: electrical engineering industry from abroad CS DS x x x
93 BDUSC659G Orders received: vehicle engineering industry from domestic market CS DS x x x
94 BDUSC660G Orders received: vehicle engineering industry from abroad CS DS x x x
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No. Code Code Name of Series Source Source Transformation
prior 1991 post 1991 prior 1991 post 1991 WG log SA

Construction

95 GS17DA BDUSDA17G Orders received by the construction sector: building construction CS DS x x
96 GS20DA BDUSDA20G Orders received by the construction sector: civil engineering CS DS x x
97 GS18DA BDUSDA18G Orders received by the construction sector: residential building CS DS x x
98 GS19DA BDUSDA19G Orders received by the construction sector: non-residential building construction CS DS x x
99 1.3.1 Man-hours worked in building construction CS FSO(c) x x x
100 1.3.1 Man-hours worked in civil engineering CS FSO(c) x x x
101 1.3.1 Man-hours worked in residential building CS FSO(c) x x x
102 1.3.1 Man-hours worked in industrial building CS FSO(c) x x x
103 1.3.1 Man-hours worked in public building CS FSO(c) x x x
104 1.4.1 Turnover: building construction CS FSO(c) x x x
105 1.4.1 Turnover: civil engineering CS FSO(c) x x x
106 BDUSMB36B Turnover: residential building CS DS x x x
107 BDUSMB31B Turnover: industrial building CS DS x x x
108 BDUSMB37B Turnover: public building CS DS x x x
109 BDESPICNG Production in the construction sector CS DS x x x

Surveys

110 WGIFOCPAE BDIFDMPAQ Business situation: capital goods producers DS DS x
111 WGIFOCGAE BDIFDMCAQ Business situation: producers durable consumer goods DS DS x
112 WGIFOCOAE BDIFDMNAQ Business situation: producers non-durable consumer goods DS DS x
113 WGIFOCPKE BDIFDMPKQ Business expectations for the next 6 months: producers of capital goods DS DS x
114 WGIFOCGHE BDIFDMCKQ Business expectations for the next 6 months: producers of durable consumer goods DS DS x
115 WGIFOCOKE BDIFDMNKQ Business expectations for the next 6 months: producers of non-durable consumer goods DS DS x
116 WGIFORTHE BDIFDRSKQ Business expectations for the next 6 months: retail trade DS DS x
117 WGIFOWHHE BDIFDWSKQ Business expectations for the next 6 months: wholesale trade DS DS x
118 WGIFOCPCE BDIFDMPCQ Stocks of finished goods: producers of capital goods DS DS x
119 WGIFOCGDE BDIFDMCCQ Stocks of finished goods: producers of durable consumer goods DS DS x
120 WGIFOCOCE BDIFDNXCQ Stocks of finished goods: producers of non-durable consumer goods DS DS x
121 WGIFOUCGQ BDIFDMPQQ Capacity utilisation: producers of capital goods DS DS x x
122 WGIFOUCRQ BDIFDMCQQ Capacity utilisation: producers of durable consumer goods DS DS x x
123 WGIFOUCOQ BDIFDMNQQ Capacity utilisation: producers of non-durable consumer goods DS DS x x
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Appendix B: Detailed Results for all Models for Eleven Variables

• ∆gdpt: annualized quarter-on-quarter GDP growth

• ∆cpit: annualized quarter-on-quarter CPI inflation rate

• ∆ct: annualized quarter-on-quarter private consumption growth

• ∆invt: annualized quarter-on-quarter investment growth (machinery and equipment in-

vestment)

• ∆wt: annualized quarter-on-quarter wage inflation rate

• ∆ipt: annualized quarter-on-quarter industrial production growth

• ∆ppit: annualized quarter-on-quarter PPI inflation rate

• ist : 3-months money market rate

• ut: unemployment rate

• ilt: long-term interest rate (bond yields with average rest maturity from 9 to 10 years)

• cat: current account balance
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Table 9: Univariate Autoregression (AR)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 0.99 1.03 0.98 0.99 1.01 0.98 1.02• 1.03 1.00 1.04 1.00
2 0.98 1.01 1.06 0.99 1.02 1.01 0.99 1.03 1.00 1.04 1.02
3 0.98 1.02 1.09 1.00 0.98 0.97 0.98• 1.02 1.00 1.03 1.03
4 1.00 1.01 1.08 1.00 0.99 0.86 0.96• 1.04 1.00 1.04 1.03
5 0.97 1.00 1.07 1.00 0.99 0.78 0.96• 1.05 1.00• 1.06 1.04
6 0.99 1.01 1.02 1.01 1.00 0.67 1.00 1.06 1.01 1.06 1.04
7 1.00 1.00 1.00 1.00 1.00 0.56 1.01 1.07 1.01 1.06 1.04
8 0.99 0.99 1.00 1.01 1.00 0.54 1.00 1.08 1.01 1.06 1.04

(b) p-value Mincer-Zarnowitz regressions

1 0.04 0.00 0.00 0.03 0.00 0.00 0.80 0.01 0.79 0.00 0.04
2 0.02 0.00 0.00 0.01 0.00 0.00 0.12 0.01 0.79 0.00 0.03
3 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.79 0.00 0.03
4 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.78 0.00 0.02
5 0.01 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.75 0.00 0.02
6 0.03 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.70 0.00 0.02
7 0.05 0.00 0.00 0.01 0.00 0.00 0.26 0.00 0.67 0.00 0.01
8 0.08 0.00 0.00 0.01 0.00 0.19 0.58 0.00 0.62 0.00 0.01

(c) R2 Mincer-Zarnowitz regressions

1 0.02 0.04 0.12 0.08 0.01 0.04 0.34 0.95 0.97 0.95 0.93
2 0.01 0.03 0.00 0.04 0.00 0.00 0.03 0.82 0.88 0.86 0.86
3 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.66 0.76 0.79 0.81
4 0.03 0.01 0.02 0.02 0.01 0.01 0.01 0.50 0.62 0.73 0.74
5 0.06 0.00 0.02 0.07 0.04 0.08 0.01 0.34 0.47 0.69 0.69
6 0.03 0.00 0.00 0.03 0.05 0.00 0.01 0.24 0.34 0.67 0.67
7 0.02 0.01 0.01 0.01 0.05 0.10 0.00 0.19 0.25 0.67 0.63
8 0.01 0.01 0.00 0.02 0.06 0.02 0.00 0.16 0.16 0.67 0.60

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 10: Large Bayesian Vector Autoregression (LBVAR)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 0.93 0.89• 0.99 0.90• 0.84• 0.83 1.11 0.95 0.99 1.02 1.00
2 0.93 0.92• 0.97 0.92 0.90• 0.76 0.96 0.89• 0.93 0.95 1.02
3 0.96 0.95 1.00 0.92 0.86• 0.76 0.94 0.88• 0.91 0.92 1.04
4 0.99 0.98 0.94• 0.92 0.88• 0.70 0.96 0.89 0.90 0.91 1.03
5 0.97 0.95 0.94• 0.92 0.88• 0.62 0.98 0.90 0.91 0.90 1.05
6 1.01 0.95 1.00 0.95 0.90• 0.63 0.99 0.91 0.93 0.88 1.06
7 1.02 0.94 0.97• 0.98 0.92 0.54 1.01 0.93 0.96 0.86 1.07
8 1.01 0.94 0.97 0.98 0.92 0.54 1.03 0.94 0.98 0.84 1.07

(b) p-value Mincer-Zarnowitz regressions

1 0.44 0.51 0.00 0.64 0.06 0.99 0.55 0.21 0.48 0.47 0.03
2 0.21 0.05 0.04 0.71 0.06 0.44 0.55 0.16 0.31 0.40 0.03
3 0.06 0.01 0.05 0.36 0.04 0.16 0.12 0.12 0.19 0.40 0.03
4 0.01 0.00 0.01 0.05 0.01 0.03 0.06 0.09 0.12 0.41 0.03
5 0.00 0.00 0.02 0.01 0.00 0.02 0.10 0.05 0.07 0.43 0.02
6 0.00 0.00 0.00 0.01 0.00 0.03 0.18 0.03 0.05 0.43 0.02
7 0.00 0.00 0.02 0.00 0.00 0.04 0.21 0.01 0.03 0.38 0.02
8 0.00 0.00 0.01 0.00 0.00 0.17 0.18 0.01 0.02 0.30 0.01

(c) R2 Mincer-Zarnowitz regressions

1 0.07 0.15 0.01 0.16 0.05 0.12 0.23 0.95 0.97 0.94 0.93
2 0.00 0.05 0.01 0.06 0.02 0.02 0.05 0.84 0.90 0.84 0.86
3 0.01 0.02 0.02 0.00 0.01 0.00 0.00 0.68 0.82 0.75 0.80
4 0.06 0.00 0.01 0.02 0.00 0.02 0.00 0.49 0.74 0.68 0.73
5 0.10 0.00 0.02 0.08 0.01 0.04 0.00 0.30 0.65 0.61 0.67
6 0.13 0.01 0.00 0.07 0.03 0.03 0.00 0.15 0.58 0.56 0.64
7 0.15 0.02 0.01 0.13 0.05 0.03 0.00 0.06 0.51 0.52 0.59
8 0.10 0.04 0.01 0.11 0.09 0.01 0.00 0.01 0.45 0.48 0.56

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 11: Factor Augmented Autoregression (FAAR)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 0.99 0.97 1.02 0.96 0.94 0.79• 0.93 1.01 0.99 1.15• 1.08•
2 1.11 1.05 1.15 1.09 1.05 0.87 0.93 0.96 0.99 1.13• 1.09
3 1.09 1.05 1.16• 1.00 0.90 0.83 0.94 0.94 1.02 1.12 1.11
4 1.10 1.10 1.13• 0.92 0.97 0.67 0.91 0.99 1.05 1.14 1.15
5 1.10 1.05 1.29• 0.98 1.01 0.60 1.02 1.04 1.07 1.15 1.13
6 1.23• 1.04 1.37• 1.05 0.97 0.62 1.04 1.09 1.09 1.15 1.20
7 1.30• 1.19• 1.44• 1.12 1.19 0.57 1.06 1.13 1.10 1.21 1.20
8 1.18• 1.14 1.51• 1.03 1.18• 0.55 1.10 1.18 1.10 1.30• 1.20

(b) p-value Mincer-Zarnowitz regressions

1 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.68 0.33 0.01 0.18
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.36 0.00 0.20
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.30 0.00 0.19
4 0.00 0.00 0.00 0.01 0.00 0.24 0.07 0.06 0.28 0.00 0.13
5 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.03 0.27 0.00 0.13
6 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.00 0.25 0.00 0.07
7 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.25 0.00 0.04
8 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.25 0.00 0.03

(c) R2 Mincer-Zarnowitz regressions

1 0.15 0.12 0.16 0.22 0.12 0.26 0.49 0.95 0.97 0.93 0.91
2 0.03 0.06 0.02 0.09 0.08 0.03 0.21 0.82 0.89 0.82 0.84
3 0.00 0.04 0.00 0.06 0.09 0.02 0.11 0.64 0.77 0.76 0.76
4 0.01 0.00 0.00 0.05 0.02 0.03 0.09 0.41 0.62 0.73 0.66
5 0.00 0.00 0.00 0.02 0.01 0.02 0.04 0.17 0.47 0.73 0.60
6 0.04 0.01 0.01 0.01 0.00 0.02 0.04 0.05 0.33 0.75 0.54
7 0.04 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.23 0.74 0.49
8 0.02 0.00 0.00 0.03 0.08 0.02 0.00 0.00 0.14 0.70 0.45

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 12: Bayesian Factor Augmented Vector Autoregression (BFAVAR)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 0.92• 0.90• 0.98 0.90 0.79• 0.83 1.12 0.98 1.00 1.02 1.00
2 0.93 0.93 0.96 0.93 0.93• 0.76 0.96 0.95 0.96 0.94• 1.00
3 0.94 0.98 1.01 0.92 0.95• 0.75 0.93 0.94• 0.94 0.91• 1.00
4 0.96 0.99 0.96• 0.89 0.97• 0.69 0.94 0.94 0.92 0.88• 1.00
5 0.94 0.98 0.96• 0.89 0.97• 0.61 0.96• 0.92 0.90 0.85• 1.00
6 0.97 0.98 1.00 0.91 0.98• 0.62 0.98 0.91 0.90 0.82• 1.00
7 0.98 0.97 0.99• 0.93 0.98• 0.52 1.00 0.91 0.90 0.80• 1.00
8 0.97 0.98 0.98• 0.94• 0.97• 0.53 1.01 0.90 0.91 0.80• 1.00

(b) p-value Mincer-Zarnowitz regressions

1 0.44 0.92 0.00 0.52 0.25 0.98 0.15 0.18 0.68 0.08 0.13
2 0.29 0.09 0.04 0.85 0.03 0.68 0.71 0.09 0.63 0.05 0.11
3 0.11 0.00 0.02 0.35 0.00 0.11 0.21 0.05 0.57 0.04 0.08
4 0.09 0.00 0.00 0.01 0.00 0.00 0.11 0.03 0.50 0.04 0.06
5 0.13 0.00 0.00 0.00 0.00 0.00 0.16 0.02 0.44 0.04 0.04
6 0.14 0.00 0.00 0.04 0.00 0.01 0.26 0.01 0.39 0.04 0.03
7 0.21 0.00 0.00 0.08 0.00 0.14 0.33 0.01 0.35 0.03 0.02
8 0.27 0.00 0.00 0.25 0.00 0.48 0.33 0.00 0.31 0.01 0.02

(c) R2 Mincer-Zarnowitz regressions

1 0.09 0.12 0.00 0.17 0.09 0.11 0.27 0.95 0.97 0.94 0.93
2 0.00 0.03 0.03 0.02 0.00 0.00 0.02 0.83 0.89 0.86 0.86
3 0.02 0.00 0.02 0.01 0.01 0.04 0.01 0.67 0.80 0.79 0.81
4 0.02 0.00 0.00 0.12 0.04 0.13 0.03 0.50 0.70 0.73 0.74
5 0.01 0.00 0.01 0.16 0.06 0.14 0.01 0.35 0.60 0.70 0.70
6 0.01 0.00 0.00 0.08 0.07 0.08 0.01 0.24 0.52 0.69 0.67
7 0.00 0.00 0.00 0.06 0.05 0.03 0.00 0.17 0.45 0.67 0.63
8 0.00 0.00 0.00 0.03 0.07 0.01 0.00 0.12 0.38 0.65 0.60

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 13: Dynamic Factor Model (DFM)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 1.01 1.00 0.97 0.97 0.88 0.84 0.94 0.99 0.99 1.13• 1.07
2 1.13 1.04 1.07 1.12 0.91 0.91 0.94 0.94 1.00 1.11 1.07
3 1.09 1.03 1.16• 0.98 0.90 0.84 0.95 0.94 1.06 1.08 1.07
4 1.02 1.11 1.13• 0.92 0.96 0.65 0.94 1.00 1.10 1.11 1.09
5 1.08 1.01 1.30• 0.94 0.97 0.61 1.04 1.03 1.14 1.13 1.11
6 1.12• 1.02• 1.32 1.03 0.97 0.62 1.04 1.08 1.17 1.13 1.21
7 1.22• 1.15• 1.27 1.08 1.07 0.55 1.04 1.10 1.18 1.20 1.20
8 1.11 1.14 1.42• 1.02 1.15 0.53 1.01 1.13 1.18 1.28• 1.23

(b) p-value Mincer-Zarnowitz regressions

1 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.91 0.24 0.01 0.16
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.22
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.23 0.00 0.27
4 0.01 0.00 0.00 0.01 0.00 0.32 0.02 0.08 0.22 0.00 0.19
5 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.03 0.20 0.00 0.14
6 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.18 0.00 0.06
7 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.17 0.00 0.04
8 0.00 0.00 0.00 0.00 0.00 0.09 0.18 0.00 0.16 0.00 0.03

(c) R2 Mincer-Zarnowitz regressions

1 0.15 0.11 0.22 0.23 0.18 0.21 0.49 0.95 0.97 0.93 0.91
2 0.01 0.06 0.03 0.08 0.12 0.02 0.20 0.82 0.89 0.83 0.84
3 0.00 0.04 0.00 0.07 0.07 0.02 0.11 0.63 0.76 0.78 0.77
4 0.00 0.00 0.00 0.05 0.00 0.07 0.08 0.38 0.60 0.75 0.68
5 0.00 0.01 0.00 0.04 0.00 0.03 0.03 0.16 0.42 0.76 0.61
6 0.00 0.01 0.01 0.03 0.00 0.04 0.04 0.04 0.27 0.77 0.54
7 0.00 0.00 0.00 0.02 0.00 0.02 0.05 0.00 0.16 0.75 0.50
8 0.00 0.00 0.00 0.05 0.07 0.06 0.04 0.00 0.08 0.71 0.44

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 14: Equal Weighted Model Averaging (EWA)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 0.98 0.99 0.97 0.97 0.98 0.95 0.98• 1.00 0.97• 1.03 1.00
2 0.96 0.96• 0.97• 0.96• 0.95• 0.82 0.96• 0.97 0.96• 1.02 1.00
3 0.96 0.98 1.05 0.96 0.94• 0.76 0.93• 0.99 0.99 1.01 1.01
4 1.00 0.98 1.03 0.89 0.91• 0.70 0.93 1.03 1.03 1.01 1.01
5 0.95 0.99 1.04 0.89 0.86• 0.59 0.95 1.06 1.09 1.04 1.02
6 0.97 0.97 1.03 0.96 0.97 0.61 0.98 1.09 1.15 1.04 1.06
7 0.97 0.97 1.03 0.96 1.00 0.51 1.02 1.13 1.23 1.06 1.07
8 0.96 0.95• 1.02 0.98 1.05 0.54 1.05 1.17 1.31 1.10 1.09

(b) p-value Mincer-Zarnowitz regressions

1 0.05 0.01 0.00 0.06 0.00 0.00 0.71 0.01 0.75 0.00 0.04
2 0.05 0.00 0.01 0.05 0.01 0.01 0.34 0.01 0.72 0.00 0.05
3 0.05 0.00 0.00 0.07 0.00 0.16 0.23 0.01 0.67 0.00 0.05
4 0.01 0.00 0.00 0.21 0.00 0.09 0.28 0.00 0.65 0.00 0.04
5 0.14 0.00 0.00 0.18 0.01 0.55 0.33 0.00 0.64 0.00 0.03
6 0.17 0.00 0.00 0.03 0.00 0.45 0.40 0.00 0.53 0.00 0.02
7 0.25 0.00 0.00 0.10 0.00 0.79 0.14 0.00 0.29 0.00 0.02
8 0.29 0.00 0.00 0.08 0.00 0.24 0.02 0.00 0.07 0.00 0.01

(c) R2 Mincer-Zarnowitz regressions

1 0.03 0.06 0.16 0.10 0.03 0.03 0.40 0.95 0.97 0.95 0.93
2 0.00 0.04 0.04 0.06 0.01 0.00 0.06 0.84 0.89 0.86 0.87
3 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.67 0.77 0.79 0.81
4 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.48 0.61 0.75 0.75
5 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.29 0.40 0.72 0.70
6 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.17 0.18 0.70 0.66
7 0.00 0.01 0.00 0.00 0.02 0.02 0.01 0.11 0.03 0.69 0.62
8 0.03 0.00 0.00 0.00 0.04 0.00 0.03 0.09 0.00 0.68 0.58

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 15: Bayesian Model Averaging (BMA)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 1.01 0.97 0.94 0.97 0.92• 0.97 1.00 1.03 0.97• 0.86• 1.01
2 0.95 0.93• 1.00 0.96• 0.93 0.89 0.94 0.95 0.96 1.04 1.04
3 0.97 0.94 1.06 0.96 0.92• 0.79 0.89 1.01 0.98 1.05 1.06
4 1.03 0.98 1.03 0.87 0.93• 0.69 0.94 1.07 1.02 1.04 1.07
5 0.95 1.01 1.07 0.92 0.84• 0.59 0.96 1.10 1.08 1.05 1.07
6 1.01 0.94• 1.04 1.02 0.98 0.61 1.02 1.10 1.16 1.05 1.12
7 0.99 0.91 1.04 1.04 1.03 0.54 1.07 1.09 1.27 1.03 1.16
8 1.04 0.96 1.02 1.08 1.03 0.56 1.11• 1.06 1.35 1.03 1.17

(b) p-value Mincer-Zarnowitz regressions

1 0.00 0.01 0.00 0.03 0.00 0.00 0.77 0.01 0.63 0.00 0.05
2 0.04 0.00 0.00 0.03 0.01 0.00 0.30 0.01 0.64 0.00 0.11
3 0.03 0.00 0.00 0.03 0.00 0.01 0.47 0.01 0.61 0.00 0.12
4 0.00 0.00 0.00 0.29 0.00 0.08 0.14 0.01 0.56 0.00 0.09
5 0.10 0.00 0.00 0.05 0.02 0.23 0.20 0.00 0.54 0.00 0.08
6 0.01 0.00 0.00 0.00 0.00 0.17 0.05 0.00 0.42 0.00 0.05
7 0.04 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.16 0.00 0.03
8 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.02

(c) R2 Mincer-Zarnowitz regressions

1 0.03 0.08 0.17 0.11 0.10 0.06 0.38 0.95 0.97 0.96 0.93
2 0.01 0.07 0.01 0.07 0.03 0.02 0.09 0.85 0.89 0.86 0.85
3 0.00 0.06 0.00 0.01 0.01 0.03 0.07 0.65 0.78 0.77 0.78
4 0.03 0.01 0.00 0.04 0.01 0.04 0.01 0.40 0.62 0.71 0.71
5 0.01 0.00 0.00 0.01 0.00 0.05 0.01 0.19 0.41 0.68 0.65
6 0.01 0.00 0.00 0.00 0.01 0.03 0.00 0.10 0.20 0.65 0.60
7 0.04 0.00 0.00 0.00 0.03 0.02 0.01 0.06 0.06 0.63 0.54
8 0.01 0.01 0.01 0.01 0.03 0.01 0.02 0.10 0.00 0.63 0.50

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 16: Vector Autoregression (VAR)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 1.26 1.13 1.02 1.26 1.22• 1.12 1.29• 1.26 1.39• 1.34• 1.29•
2 1.49 1.28 1.06 1.49 1.21 1.24 1.33 1.42 1.58• 1.32• 1.45•
3 1.73 1.56 1.22• 1.68 1.41 1.33 1.60 1.65 1.81 1.40• 1.61•
4 1.94 1.92 1.14 1.96 1.74 1.36 1.96 1.91 2.09 1.48• 1.61•
5 2.24 2.31 1.36 2.18 2.07 1.38 2.37 2.18 2.44 1.55• 1.67
6 2.35 2.45 1.42 2.32 2.42 1.34 2.71 2.48 2.83 1.63• 1.80
7 2.41 2.91 1.54 2.25 2.78 1.22 2.97 2.78 3.31 1.72• 1.88
8 2.41 3.30 1.65 2.10 3.11 1.04 3.27 3.03 3.77 1.85 1.88

(b) p-value Mincer-Zarnowitz regressions

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.21 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.08 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.03 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(c) R2 Mincer-Zarnowitz regressions

1 0.04 0.14 0.24 0.08 0.09 0.07 0.23 0.94 0.94 0.91 0.91
2 0.00 0.07 0.04 0.03 0.08 0.00 0.05 0.77 0.73 0.74 0.81
3 0.01 0.03 0.00 0.02 0.01 0.00 0.00 0.56 0.42 0.56 0.70
4 0.00 0.01 0.02 0.01 0.00 0.00 0.02 0.37 0.16 0.41 0.65
5 0.05 0.00 0.01 0.02 0.03 0.05 0.03 0.23 0.03 0.32 0.60
6 0.00 0.04 0.00 0.01 0.03 0.00 0.01 0.14 0.00 0.26 0.54
7 0.00 0.00 0.00 0.00 0.03 0.05 0.00 0.08 0.01 0.22 0.47
8 0.02 0.02 0.04 0.00 0.11 0.00 0.03 0.06 0.02 0.16 0.46

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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Table 17: Bayesian Vector Autoregression (BVAR)

horizon ∆gdpt ∆cpit ∆ct ∆invt ∆wt ∆ipt ∆ppit ist ut ilt cat

(a) RMSE relative to AR(2) benchmark

1 0.93 0.90• 0.96 0.89 0.84• 0.81 1.06 0.99 1.01 1.07• 1.00
2 0.94 0.94 0.99 0.88 0.94 0.73 0.95 0.97 1.01 1.03 1.01
3 0.96 0.98 1.04• 0.87 0.95 0.72 0.94• 0.98 1.02 1.01 1.02
4 0.99 1.01 0.99 0.85 0.99 0.67 0.96 0.98 1.03 1.00 1.02
5 0.97 1.02 1.00 0.86 1.00 0.59 0.98 0.98 1.05 0.99 1.03
6 1.00 1.00 1.03 0.90 1.02 0.61 0.99 0.98 1.07 0.98 1.03
7 1.02 0.99 1.04• 0.94 1.03 0.51 1.00 0.98 1.10 0.97 1.02
8 1.02 1.01 1.03 0.96 1.05 0.53 1.02 0.98 1.12 0.96 1.02

(b) p-value Mincer-Zarnowitz regressions

1 0.37 0.07 0.01 0.31 0.03 0.51 0.81 0.01 0.78 0.16 0.17
2 0.11 0.00 0.00 0.36 0.01 0.76 0.37 0.01 0.62 0.11 0.17
3 0.05 0.00 0.00 0.39 0.00 0.74 0.09 0.00 0.47 0.08 0.16
4 0.02 0.00 0.00 0.40 0.00 0.64 0.05 0.00 0.36 0.06 0.13
5 0.03 0.00 0.00 0.39 0.00 0.65 0.07 0.00 0.26 0.06 0.10
6 0.03 0.00 0.00 0.38 0.00 0.57 0.18 0.00 0.19 0.05 0.09
7 0.02 0.00 0.00 0.22 0.00 0.78 0.27 0.00 0.14 0.03 0.07
8 0.02 0.00 0.00 0.20 0.00 0.60 0.21 0.00 0.11 0.01 0.05

(c) R2 Mincer-Zarnowitz regressions

1 0.07 0.17 0.02 0.20 0.09 0.16 0.30 0.96 0.97 0.94 0.93
2 0.00 0.08 0.02 0.15 0.03 0.07 0.07 0.84 0.88 0.83 0.86
3 0.00 0.04 0.01 0.11 0.00 0.04 0.01 0.69 0.76 0.74 0.79
4 0.01 0.01 0.00 0.07 0.01 0.01 0.00 0.52 0.63 0.66 0.72
5 0.00 0.00 0.01 0.04 0.03 0.01 0.00 0.36 0.49 0.60 0.66
6 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.26 0.38 0.57 0.63
7 0.00 0.00 0.00 0.00 0.03 0.02 0.01 0.19 0.29 0.54 0.59
8 0.00 0.02 0.00 0.00 0.06 0.00 0.00 0.16 0.21 0.51 0.56

Notes: All forecasting models are estimated over a rolling window of 60 quarters, starting in 1992Q4. For each horizon a total of 76 forecasts is computed. The
symbols •, •, •, indicate that the relative RMSE is significantly different from one at the 1, 5, or 10% level, respectively. p-values larger than 0.05 imply that the
null hypothesis of unbiasedness cannot be rejected at the 5 % level, while the R2 can be interpreted as the fraction of the variance in the data that is explained by the
forecasts.
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