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Abstract 

Incorrect knowledge of the health production function may lead to inefficient household choices, and 

thereby to the production of suboptimal levels of health. This paper studies the effects of a 

randomized intervention in rural Malawi which, over a six-month period, provided mothers of young 

infants with information on child nutrition without supplying any monetary or in-kind resources. A 

simple model first investigates theoretically how nutrition and other household choices including 

labor supply may change in response to the improved nutrition knowledge observed in the 

intervention areas. We then show empirically that, in line with this model, the intervention improved 

child nutrition, household consumption and consequently health. These increases are funded by an 

increase in male labor supply. We consider and rule out alternative explanations behind these 

findings. This paper is the first to establish that non-health choices, particularly parental labor supply, 

are affected by parents’ knowledge of the child health production function.  
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1. Introduction 

Since Becker’s (1965) seminal article, economists have long recognized that many goods are 

not directly bought in the market, but are produced at home using a combination of market 

and non-market goods. The home production framework has been particularly fruitful in 

studying the production of health, in particular child health (Grossman 1972, Rosenzweig and 

Schultz 1983, Gronau 1986 and 1997). An important implication of such models is that 

households make choices given their knowledge of the (child) health production function. 

Consequently, deficiencies in knowledge lead to suboptimal household choices and thereby 

distorted levels of child health. Establishing empirically the consequences of deficiencies in 

knowledge on household behavior has, however, been challenging because knowledge is 

endogenous and is usually either unobserved or proxied by education which also affects child 

health through other channels including earnings. 

 

In this paper, we overcome this challenge by exogenously improving mothers’ knowledge of 

the child health production function through a cluster randomized trial in rural Malawi, 

which, in solely providing information on child nutrition to mothers, yields a clean source of 

identification. Our contribution is twofold. First we assess whether the intervention improved 

child nutrition and consequently health. Second, drawing on a simple theoretical model, we 

investigate how other household choices change to accommodate the improved knowledge of 

the production function. In so doing, we establish empirically that non-health choices, 

particularly parental labor supply, are affected by parents’ knowledge of the child health 

production function. This finding is a key contribution of the paper. 

 

In the context we study, rural Malawi, mothers have many misconceptions about child 

nutrition. To take some examples, it is common practice to give porridge diluted with 
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unsterilized water to infants as young as one week; the high nutritional value of groundnuts, 

widely available in the area, is not well-known; and widespread misplaced beliefs include 

that eggs are harmful for infants as old as 9 months, and that the broth of a soup contains 

more nutrients than the meat or vegetables therein. This evidence suggests that important 

changes can be expected if these misconceptions are corrected. Moreover, the fact that 

mothers are the main care-givers of young children, and that Malawi is a predominantly 

matrilineal society, means that targeting mothers is likely to be an effective way of improving 

children’s health. 

 

The intervention we study delivered information in an intense manner: trained local women 

visited mothers in their homes once before the birth of their child and four times afterwards, 

and provided information on early child nutrition on a one-to-one basis. Moreover, the fact 

that the intervention had been running for at least 3 years when outcome data were collected, 

allows for a sufficient time-frame for practices to change. This lapse also allows us to 

measure medium-term impacts, which is important since interventions often perform much 

better in the short- rather than medium-term (Banerjee et al. 2008 and Hanna et al. 2012). 

 

Consistent with improvements in knowledge, we find evidence of improvements in infants’ 

diets and household food consumption, particularly of protein-rich foods and of fruit and 

vegetables. Clearly, permanent increases in consumption must go hand-in-hand with 

increases in labor supply (unlike responses to shocks); otherwise households will not be able 

to afford such increased consumption. Indeed, we find strong evidence to suggest that these 

improvements are funded by increases in the labor supply of adult males. Overall, the 

findings are consistent with households learning that some relatively costly foods are more 

nutritious than they previously believed, and adjusting their labor supply so as to facilitate 
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increases in their children’s intake of them. Indeed, we show that households adjust their 

behavior on several margins including child diet inputs and adult labor supply, making their 

response more complex than simply changing the composition of consumption while keeping 

total consumption constant.  

 

We find that improving knowledge of child nutrition improves children’s physical growth, 

particularly height, a widely used indicator of long-term nutritional status. This finding is 

particularly important for policy: malnutrition is a severe and prevalent problem in 

developing countries where around one third of children below the age of five are stunted in 

growth (de Onis et al. 2000) and almost half of all child mortality is associated with 

malnutrition (Pelletier et al. 1995). Moreover, malnutrition in infanthood not only decreases 

welfare, but is also linked to poor cognitive and educational performance and low 

productivity later on in life.5  

 

The paper pays careful attention to the important issue of inference in cluster randomized 

trials when the number of clusters is small. It is well known that in this situation, standard 

statistical formulae for clustered standard errors based on asymptotic theory (cluster-

correlated Huber-White estimator) provide downward biased standard error estimates 

(Donald and Lang 2001, Wooldrige 2004, Duflo et al. 2004, Cameron et al. 2008). We use 

two leading methods for inference in this case - randomization inference (Fisher 1935, 

Rosenbaum 2002) and wild-bootstrap cluster-t (Cameron et al. 2008). Furthermore, we assess 

their performance in our data using Monte Carlo experiments, and find that both methods 
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5 For long-term consequences of poor health or nutritional status in infanthood on long-term outcomes see, 

among others, Behrman 1996, Strauss and Thomas 1998, Glewwe et al. 2001, Alderman et al. 2001, Behrman 

and Rosenzweig 2004, Schultz 2005, Van den Berg et al. 2006, Hoddinott et al. 2008, Maluccio et al. 2009, 

Banerjee et al. 2010, Currie et al. 2009, Van den Berg et al. 2009, Maccini and Yang 2009, Currie 2010, Van 

den Berg et al. 2010, Lindeboom et al. 2010, Almond and Currie 2011, Barham 2012.  
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perform relatively well. This is the first empirical paper to present the performance of these 

two methods side-by-side. This is of clear interest for many empirical applications, given the 

strong and ever-increasing trend of cluster randomized trials with a small number of clusters.  

 

Our work fits into at least three strands of the literature. The first is the growing literature 

assessing the effectiveness of providing health information on behavior (Dupas, 2011a).6 The 

evidence on this is mixed. On the positive side, Madajewicz et al. (2007) and Jalan and 

Somanathan (2008) find that the provision of specific information - such as the arsenic or 

fecal concentration of water- affects associated practices; Dupas (2011b) shows that teenage 

girls change their sexual behavior in response to information on the risks of contracting HIV. 

Other studies, however, find no impacts of providing health information on associated 

practices and behaviors. Kamali et al. (2003), Kremer and Miguel (2007) and Luo et al. 

(2012) find that health education does not change health behaviors relating to HIV in Uganda, 

deworming in Kenya and anemia in China.  

 

This paper departs from these studies not only by considering a broader and more 

multifaceted type of information (ways to improve child nutrition), but also by studying the 

responses of households on a wider range of household margins - with a particular focus on 

labor supply - than those directly targeted by the intervention. In doing so, this is one of the 

first papers to investigate how individual and household behaviors not directly related to the 

topic of an information campaign adjust in response to it. 

 

Second, our paper also contributes to the literature evaluating the effects of interventions that 

provide nutrition information on child health. Morrow et al. (1999) and Haider et al. (2000) 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
6"For"the"case"of"education,"see"for"instance"Jensen"(2010)."
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have studied effects of similar interventions on feeding practices only (specifically exclusive 

breastfeeding) within small scale randomized controlled trials in Mexico and Bangladesh 

respectively.  Further, a set of mostly non-experimental studies has investigated the effects of 

similar interventions on health outcomes, finding improvements in child weight-for-age, an 

indicator of medium-term health status (Alderman 2007, Linnemayr and Alderman 2011, 

Galasso and Umapathi 2009). This paper builds on this literature by considering the effects 

on child health, health practices, and other margins of household behavior, all identified 

through a randomized controlled trial. 

 

Finally, our paper relates to the literature investigating the causal effects of parental education 

on child health. Much of this literature relates to developed countries and provides mixed 

evidence. Currie and Moretti (2003) and McCrary and Royer (2011) find respectively, 

decreased incidence of low birthweight and modest effects on child health of increased 

maternal schooling in the US, while Lindeboom et al. (2009) find little evidence that parental 

schooling improves child health in the UK. For developing countries, we are only aware of 

Breierova and Duflo (2004) and Chou et al. (2010) who find that parental schooling 

decreases infant mortality in Indonesia and Taiwan respectively. However, it is difficult to 

disentangle whether the effect of education is working through changes in knowledge of the 

child production function, or through increased income and hence access to more and better 

quality care. Related to this, Thomas et al. (1991) and Glewwe (1999) find that almost all of 

the impact of maternal education on child’s height in Brazil and Morocco can be explained by 

indicators of access to information and health knowledge.  

 

The rest of the paper is structured as follows. Section 2 provides some background 

information on rural Malawi and describes the experimental design and data, section 3 
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describes the theoretical framework, while section 4 sets out the empirical model. Our main 

results are presented in section 5. Section 6 rules out alternative potential explanations behind 

our findings, while section 7 concludes.  

 

2. Background and Intervention 

2.1 Background 

Malnutrition in the early years (0-5) has important, potentially devastating, short- and long-

run effects. It leaves children vulnerable to other illnesses and diseases, threatening their very 

survival (Bhutta et al. 2008) and affects longer term outcomes such as schooling, adult health 

and productivity (Glewwe et al. 2001, Maluccio et al. 2009).  It is one of the major public 

health and development challenges facing Malawi, one of the poorest countries in Sub-

Saharan Africa. The Malawi Demographic and Health Survey (DHS) Report for 2004 

indicates an under-five mortality rate of 133 per 1000, and under-nutrition is an important 

factor driving this: Pelletier et al. (1994) estimate that 34% of all deaths that occur before age 

5 in Malawi are related to malnutrition (moderate or severe). Moreover, 48% of Malawian 

children aged younger than 5 years suffer from chronic malnutrition, a rate that is the second 

highest in sub-Saharan Africa.  

 

Poor feeding practices are at least partly responsible for these extreme malnutrition 

indicators. Over half of all infants below 6 months of age are given food and/or unsterilized 

water (DHS, 2004), which can lead to gastrointestinal infections and growth faltering (Haider 

et al. 1996, Kalanda et al. 2006) and is contrary to World Health Organization (WHO) 

recommendation of exclusive breastfeeding for the first six months of an infant’s life."

Furthermore, porridge diluted with unsterilized water is often given in large quantities to 

infants as young as one week (Kerr et al. 2007). In terms of nutrition for infants above 6 
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months of age, their diets - rich in staples such as maize flour - frequently lack the necessary 

diversity of foods to provide sufficient amounts of energy, proteins, iron, calcium, zinc, 

vitamins and folate: indeed in our sample, 25% of children aged 6-60 months did not 

consume any proteins over the three days prior to the survey, with a further 30% having 

consumed just one source of protein.  Poor nutritional practices are likely to be related to a 

lack of knowledge: for instance, only 15% of mothers in our sample knew how to best cook 

fish combined with the local staple so as to maximize nutritional value.  

 

It is against this background that, in 2002, a research and development project called 

MaiMwana (Chichewa for “Mother and Child”) was set up in Mchinji District, in the Central 

region of Malawi.7 Its aim was to design, implement and evaluate effective, sustainable and 

scalable interventions to improve the health of mothers and infants. Mchinji is a primarily 

rural district, with subsistence agriculture being the main economic activity. The most 

commonly cultivated crops are maize, groundnuts and tobacco. The dominant ethnic group in 

the district is the Chewa (over 90% in our data). Socio-economic conditions are comparable 

to or poorer than the average for Malawi (in parentheses in what follows), with literacy rates 

of just over 60% (64%), piped water access for 10% (20%) of households, and electricity 

access for just 2% (7%) of households.8  

 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
7MaiMwana is a Malawian trust established as a collaboration between the Department of Pediatrics, Kamuzu 

Central Hospital, the Mchinji District Hospital and the UCL Centre for International Health and Development. 

See http://www.maimwana.malawi.net/MaiMwana/Home.html 
8 Source: Malawi Population and Housing Census, 2008. 
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2.2 The Intervention 

In 2005, MaiMwana established an infant feeding counseling intervention in Mchinji District 

(still ongoing), to impart information and advice on infant feeding to the mothers of babies 

aged less than six months.9  The intervention thus targets the very first years of life, a critical 

period for growth and development during which nutritional interventions are likely to be 

most beneficial (Shroeder et al. 1995, Shrimpton et al. 2001, Victora et al. 2010). The 

information is provided by trained female volunteers (“peer counselors” hereon) nominated 

by local leaders. In practice, peer counselors are literate local women aged 23-50 years with 

breastfeeding experience.10  

 

Each peer counselor covers an average population of 1,000 individuals, identifying all 

pregnant women within this population and visiting them five times in their homes: once 

before giving birth (3rd trimester of pregnancy) and four times afterwards (baby’s age 1 week, 

1 month, 3 months, 5 months). Although all pregnant women are eligible for the intervention 

and participation is free, in practice around 60% of them are visited by the peer counselors.  

 

In terms of the content of the visits, exclusive breastfeeding is strongly encouraged in all 

visits starting from the very first. Information on weaning is provided from when the baby is 

1 month old (visits 3-5) and includes suggestions of suitable locally available nutritious 

foods, the importance of a varied diet (particularly, the inclusion of protein and 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
9 Though the intervention is predominantly focused on nutrition, it also touches on other issues such as birth 

preparedness, HIV testing and counseling, vaccinations, and family planning. See subsection 6.3 for a 

discussion of how these aspects of the intervention relate to our results. 

10"Peer counselors receive an initial 5 day and annual refresher training, and attend monthly meetings. They are 

not paid, but receive a bicycle, meeting allowances, registers, calendars and supervision forms. They are 

supervised by 24 government health surveillance assistants and 3 MaiMwana officers."
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micronutrient-rich foods, including eggs) and instructions on how to prepare foods so as to 

conserve nutrients and ease digestion (for instance to mash vegetables rather than liquidize 

them; to pound fish before cooking it). Peer counselors were provided with a manual to 

remind them of the content relevant for each visit, and simple picture books to aid in 

explaining concepts.    

 

Lewycka et al. (2013) find that the intervention reduces infant mortality by between 18-36%, 

probably due to the increase in exclusive breastfeeding. Our paper addresses a different 

question using a different data source collected specifically to do so: first, whether the 

intervention affected consumption, nutritional practices and child nutrition to the age of 

around 5 years, and second, what are the underlying mechanisms behind the observed effects.  

 

2.2.1 Experimental Design 

The evaluation is based on a cluster randomized controlled trial designed as follows (see 

Lewycka et al. 2010, Lewycka 2011, Lewycka et al. 2013). Mchinji District was divided into 

48 clusters by combining enumeration areas of the 1998 Malawi Population and Housing 

Census.11 This was done in a systematic way, based on the contiguity of enumeration areas 

and respecting boundaries of Village Development Committees (VDCs)12, such that each 

cluster contained approximately 8,000 individuals. Within each cluster, the 3,000 individuals 

(equating to 14 villages on average) living closest to the geographical centre of the cluster 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
11The District Administrative Centre was excluded because it is relatively more urbanized and less comparable 

to the rest of the District. 

12This is an administrative area in Malawi, grouping together a number of villages and headed by a Group 

Village Headman. 
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were chosen to be included in the study.13 The study population therefore comprises of 

individuals living closest to the geographical centre of the clusters and was selected in this 

way in order to limit contamination between neighboring clusters by creating a natural buffer 

area. 12 clusters were randomly selected to receive the infant feeding counseling intervention, 

with an average of three peer counselors covering each cluster. A further 12 serve as 

controls.14  

 

2.2.2 Evaluation Sample Description 

A census of women of reproductive age was conducted by MaiMwana in all of the clusters in 

2004, before the intervention started (“baseline census” from hereon) in July 2005.15 

Approximately 3.5 years into the intervention, which is still in place, we drew a random 

sample from the baseline census in order to conduct the first follow-up survey.16 Specifically, 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
13 The geographic centre was chosen to be the most central village in the cluster as shown on a cartographic map 

from the National Statistical Office, Malawi, and whose existence was corroborated with the District 

Commissioner’s records.  See Lewycka (2011), pp. 122 for more details.  

14 Another 24 clusters were randomly assigned to receive a participatory women’s group intervention, whereby 

women of reproductive age were encouraged to form groups to meet regularly to resolve issues relating to 

pregnancy, child birth and neo-natal health. Child nutrition was not a primary focus of this intervention and so 

we exclude these clusters from this analysis (see instead Rosato et al. 2006, Rosato et al. 2009 and Lewycka et 

al. 2013). MaiMwana Project also improved health facilities across the District, which benefitted both 

intervention and control clusters equally. 

15 Further details on this baseline census can be found in Lewycka et al. (2010). We take the intervention start 

date to be July 2005, the date by which the first 6-month cycle had been fully completed, in line with Lewycka 

et al. (2013). . 

16Data collection was carried out by MaiMwana in collaboration with the authors of this paper. Data were 

collected in Nov 2008-March 2009 (Oct 2009-Jan 2010) at first (second) follow-up. To ensure that results were 

not driven by seasonality, field teams collected data in intervention and control clusters at the same time.  Data 



13"
"

in 2008 we drew a random sample of 104 women of reproductive age (17-43), regardless of 

their child bearing status17, from each of the 24 clusters, leaving us with a target sample of 

2,496 women. The baseline census contains some socio-economic and demographic 

characteristics of these women and their households, as shown in Table 1. Women are on 

average 24.5 years old, just over 61% of them are married, over 70% have some primary 

schooling but just 6% have some secondary schooling, and 66% reported agriculture as their 

main economic activity. Households are predominantly agricultural and poverty is high, as 

indicated by the housing materials and assets. The table also shows that the randomization 

worked well with the sample well-balanced across intervention and control clusters at 

baseline given that only 1 out of 25 variables turns out to be unbalanced.18   

 

[TABLE 1 HERE] 

 

We assess the impact of the intervention over three and a half years after it began. While this 

has the benefit of allowing us to assess the effect of the intervention in the medium rather 

than short term, it also increases the risk of attrition. We succeeded in interviewing around 

two thirds of the sample drawn for the first follow-up survey: 65% in intervention clusters 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
were collected using Personal Digital Assistants (PDAs) with in-built consistency checks, which we believe 

resulted in improved accuracy relative to paper questionnaires. The data are available for download at 

http://www.esds.ac.uk/ (study 6996).  

17This was done to avoid any potential bias arising from endogenous fertility decisions in response to the 

intervention. This turns out not to be an important concern, as we show in section 6.2. 

18Other welfare programs were operating in the District at the same time as this intervention. The potentially 

most important is the Mchinji Social Cash Transfer, providing cash transfers to the poorest 10% of households 

in the district. At the time of our surveys, the intervention was in the pilot stage and only 2.5% of households in 

our sample (distributed evenly between intervention and control clusters) report having received it. 
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and 67% in control clusters. Apart from the time lapse between baseline and the first follow-

up, two additional factors contributed to the attrition. First, the district of Mchinji is 

particularly challenging for the collection of panel data because respondents are known to 

report “ghost members” - fictitious household members - with the intention of increasing 

future official aid/transfers which may depend positively on household size (see Miller and 

Stoka 2012 for “ghost members” and Giné, Goldberg and Yang 2012 for problems relating to 

personal identification in Malawi). Hence, it is possible that some women listed in the 

baseline census were in fact “ghost members” and so could not be found by the field team in 

2008. Second, an unexpected sharp drop of the British Pound against the Malawi Kwacha 

resulted in fewer resources to track women who had moved.  

 

The right hand panel of Table 1 shows that the balance on baseline characteristics is 

maintained in the sample of women who were found (“interviewed sample”). A small 

imbalance is detected on just 1 variable at the 10% level, suggesting that attrition between 

baseline and the first follow-up was not significantly different between intervention and 

control clusters. While it is reassuring that attrition is not significantly different between 

intervention and control clusters in terms of observed variables, it could nonetheless be the 

case that there is differential attrition in terms of unobserved variables. To deal with such 

concerns, in section 6.4 we consider attrition in detail, allowing for differential attrition in 

both observed and unobserved variables, and show that our conclusions are robust to this. 

"

We conducted a second follow-up survey on these women one year later, in 2009-10, 

tracking and successfully interviewing 91% of the women interviewed at first follow-up: 

92.5% and 90% in intervention and control areas respectively. Though not displayed, the 
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balance for this sample is very similar to that displayed in the last three columns of Table 1, 

with the addition of a small imbalance in marital status.  

 

The surveys contain detailed information on household consumption; consumption of liquids 

and solids for each child in the household (≤6 years); breastfeeding practices (≤2 years); 

health for all individuals in the household, reported by main respondent; weights and heights 

of children (≤6 years); education (≥6 years) and labor supply (≥6 years); and the main 

respondent’s knowledge about child nutrition.  

 

3. Conceptual Framework  

In order to understand how information of the type provided by the intervention might affect 

household decisions, we present a simple theoretical model in which households care about 

adult consumption and leisure, and about the health of their child, which is a function of the 

child’s consumption. We assume for simplicity that households have 1 adult and 1 child. The 

adult chooses simultaneously the amounts to spend on child consumption, C, adult 

consumption, A, and leisure L (or labor supply, T-L, since T is total time endowment of the 

adult). The household’s optimization problem is therefore:  

!!!!!max
{!,!,!}

!!!!!!! !, ! + ! !                (1) 

                                                !":!!!!!!!!!!" + ! ≤ ! ! − !          (2) 

                                                                       ! = ℎ(!")             (3) 

where U(.,.) captures the utility from adult consumption and leisure, G(.) captures the utility 

from child health, p is the price of adult consumption relative to child consumption, and w is 

the wage per unit of time. The child health production function, ℎ(!"), depends on the 

child’s consumption, C, and θ, which is a parameter reflecting the household’s efficiency in 

child health production: for a given amount of child consumption, C, a larger θ corresponds 
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to better child health. 19 In this framework, we think of the intervention as raising the value of 

θ, by directly increasing knowledge about child nutrition. 

 

As standard, we assume that U(.,.),G(.), and h(.) are increasing and strictly concave in their 

arguments and that the second order condition to attain an interior maximum is satisfied.20,21 

After differentiating the first order conditions with respect to θ (see Appendix A) we find that 

!"
!"!is positive if and only if: 

 

!" (!!!)(ℎ′)! + ℎ′′!′ + !!ℎ! > 0             (4) 

 

Condition (4) is satisfied when K(θC) ≡ G(h(θC)) is not too concave, and in particular when 

the concavity of K(θC), as measured by the elasticity of K′ θC , is less than one.22 A 

commonly used function that would satisfy this condition globally is K(θC) = (θC)!, with 

α<1. However, it is worth stressing that for !"!" > 0 to hold, condition (4) need not hold for all 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
19We use a static, unitary model to draw out the key behavioral responses to the intervention in the simplest 

way. See Chiappori (1997) and Blundell et al. (2005), among others, for work that incorporates labor supply, 

household production and/or children within a collective framework. See Grossman (1972) for dynamic 

considerations of a health production function. 
20 The assumption that U(.,.) and G(.) are separable allows us to abstract from the signs and magnitudes of the 

cross-partial derivatives of the household utility function with respect to A and H, as well as H and L. Given that 

the empirical literature has not shed light on these cross-partial derivatives, allowing for such non-separabilities 

would complicate the model without improving its predictive power. 
21 We assume that the household cannot borrow, which is consistent with well-known credit constraints in 

developing countries, as discussed for instance in Dupas (2011a). 

22 Note that condition (4) can be rewritten as −θC !
!! !!
!! !! < 1  in which the left hand side is the elasticity of 

K′(θC). This type of condition normally arises in models with additive utility and hence it is natural that it 

appears here. For instance, note that the condition would imply a restriction in the coefficient of relative risk 

aversion would K() be the Bernoulli utility function in a model with uncertainty."
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values of θC: it is enough that it holds locally at the optimum. This allows us to establish the 

first proposition: 

 

Proposition 1. If condition (4) is satisfied, providing information on child nutrition increases 

child consumption: !"!" > 0.  

It is optimal to accommodate this increase in child consumption along the other two margins 

available to the household: decreasing adult consumption and decreasing leisure. This is 

because the concavity of the utility function implies that utility decreases less by 

simultaneously reducing L and A than by reducing only one margin.  Due to the decrease in 

leisure, total household consumption increases (the increase in child consumption more than 

offsets the decrease in adult consumption).23 Appendix A establishes these results 

summarized in Proposition 2: 

 

Proposition 2: If condition (4) is satisfied and leisure and adult consumption are 

complements, (!!" > 0) or substitutes (!!" < 0), but satisfying !!!!" − !!!! > 0, then 

providing information leads to: (i) a decrease in leisure, L, (ii) an increase in household 

consumption, pA+C, (iii) a decrease in adult consumption, A. 

 

It is worth highlighting that complementarity between leisure and adult consumption 

(!!" > 0) is sufficient but not necessary for this result to hold.24 The same result will be 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
23 Our simple model abstracts from differential labor supply responses of the mother and the father. In a two 

parent model, one could imagine that additional time devoted to the acquisition and preparation of more 

nutritious foods might be to the detriment of mother’s labor supply and/or leisure. However, if male and female 

wages are the same, it would still be the case that total household labor supply increases with the father more 

than offsetting any potential reduction in mother’s labor supply. If male wages are higher than female wages, the 

results would hold in terms of earnings rather than labor supply. 
24 !!" > 0!is also sufficient for the second order conditions to hold. 
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obtained when leisure and adult consumption are substitutes, as long as !!" is not too large in 

absolute value (see Appendix A). Note that the literature has not reached a consensus on 

whether consumption and leisure are complements or substitutes; with early work by 

Heckman (1974) favoring the latter while Mortensen (1977) favors the former.  

 

Therefore, under assumptions which we believe to be not too restrictive, receiving 

information on child nutrition should increase both child and household consumption, 

decrease adult consumption and increase adult labor supply. We now turn to testing these 

propositions using the data and experimental set-up described in Section 2. 

 

4. Empirical Framework 

4.1 Estimation and Inference 

The randomized experiment provides a clean and credible source of identification to test the 

propositions emerging from the theoretical framework above. To do so, we estimate OLS 

regressions of the form 

 

Y!"# = !α+ !β!T! + !X!"#β! + !Z!"β! + !! + !u!"#,    t=1,2    (5) 

 

where !!"# includes outcomes for unit i (household or individual, depending on the outcome 

of interest) living in cluster c at time t (=1, 2 for first and second follow-ups, 2008-09 and 

2009-10, respectively).25 In line with the model, the dimensions of household behavior likely 

to be affected include household and child consumption, labor supply, and child health26; !! 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
25 For binary outcomes, results using Probit models are very similar and are not reported. 

26 Adult consumption also may be affected but, unfortunately, no good measure of adult-specific goods is 

available in our data.  
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is a dummy variable which equals 1 if the main respondent of our survey was, at the time of 

the baseline in 2004, living in a cluster that later received the intervention; !X!"# is a vector of 

household/individual-level variables measured at time t including a quadratic polynomial in 

age and gender; !!!!is a vector of cluster-level variables measured at baseline such as 

proportions of women with Chewa ethnicity, and proportions with primary or secondary 

schooling. !! is a vector of month-survey year dummies indicating the month of the 

interview, and !!"# is an error term which is uncorrelated with the error term of others living 

in other clusters (! !!"#!!"# = 0!!for$! ≠ !, ! ≠ !), but which may be correlated in an 

unrestricted way with that of others living in the same cluster, independently of the time 

period (! !!"#!!"# ≠ 0). Note that this correlation structure allows for the error term for 

individuals/households in the same cluster to be correlated over time, and also for the 

presence of spillovers within but not across clusters, which is reasonable for our case given 

the presence of large buffer areas in place between study areas in adjacent clusters, as 

discussed in section 2.2.1. 

 

The treatment indicator, !!, is defined on the basis of the cluster of residence of the main 

respondent in the 2004 baseline census, regardless of whether she received the peer 

counselor’s visit. Therefore, we identify an intention-to-treat parameter. Defining !! on the 

basis of baseline residence avoids two biases: the first potentially arising from peer 

counselors choosing to visit some mothers and not others (and vice versa, with some mothers 

choosing not to receive the visits), which would render actual participation endogenous; the 

second bias might occur if women have migrated to intervention clusters from control 

clusters so as to benefit from the intervention." 
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In terms of inference, standard statistical formulae for clustered standard errors based on 

asymptotic theory (cluster-correlated Huber-White estimator) provide downward biased 

standard error estimates if the number of clusters is small thus over-rejecting the null 

hypothesis of no effect (Donald and Lang 2001, Wooldrige 2004, Duflo et al. 2004, and 

Cameron et al. 2008). This is a potential issue here, as there are just 24 clusters. The literature 

has put forward two approaches to obtain valid p-values for the null hypothesis of no effect: 

wild cluster bootstrap-t (Cameron et al. 2008) and randomization inference (Fisher 1935, 

Rosenbaum 2002).27  

 

To implement randomization inference, we follow Small et al. (2008) to take into account the 

covariates. This is done by regressing the outcome variable on all covariates, except for !!, 

and applying the randomization inference procedure to the residuals from this regression. The 

test statistic is as follows: 

!!"#
!!!:!!!!

− !!"#
!!!:!!!!

 

where !!"# is the residual of the first-stage regression for household i in cluster c at time t, !! 

is the number of households in treated clusters and !! is the number of households in control 

clusters. Randomization inference constructs the distribution for the test statistic for every 

possible permutation of the randomization across clusters.28 In practice, given the large 

number of possible permutations (2,704,156 in our case), it is not possible to compute the test 

statistic for every possible permutation of the randomization allocation. We instead use 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
27 See Cohen and Dupas (2010) and Bloom et al (2013) for recent applications of randomization inference in 

economics, and Lucas (2010) and Busso et al (2013) for application of the wild cluster bootstrap-t."
28"Randomization inference is non-parametric and exploits the randomization, rather than asymptotic results, for 

inference. A disadvantage, however, is that inference is conducted on a sharp null hypothesis of no effect for 

any unit in the data, rather than the more interesting hypothesis of null average effect. 
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100,000 randomly selected permutations to construct the distribution. The p-value is then 

constructed based on the proportion of test statistic values that are greater than the actual test 

statistic value. 

 

In each of the estimation tables, we report clustered standard errors computed using the 

cluster correlated Huber-White estimator, as well as the p-values of tests of the null that the 

coefficient is zero computed using both wild-bootstrap cluster-t procedure and randomization 

inference. Moreover, in section 5.3, we present the results of a Monte Carlo exercise in which 

we compare the test size for these two approaches with the nominal test size, within data 

generating processes that incorporate the main features of our data (number of clusters, 

number of observations and intra-cluster correlation).  

 

4.2 Internal Validity 

Although the identification of the treatment effect relies on the randomization, one potential 

source of bias arises from the fact that the intervention reduced infant mortality in 

intervention areas (Lewycka et al. 2013). However, this is only likely to be relevant for 

outcomes relating to children’s health, where this differential mortality might alter the 

(unobserved) distribution of health endowments of children in our sample. Under the 

assumption that weaker children are the ones more likely to survive as a result of the 

intervention (an intuitive and common assumption known as “the selection effect” - see 

Deaton 2007, Bozzoli et al. 2009 among others), this would imply that the average child 

health endowment is relatively poorer in intervention areas. Consequently, we may be 

underestimating the effect of the intervention on children’s health. Another potential source 

of bias is that if the intervention affected fertility, this could alter the composition of children 
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in intervention and control clusters.29 However, as we show in section 6.2, the intervention 

does not appear to have affected either fertility or family planning, suggesting that this is not 

an issue in our context.  

 

Finally, an important potential source of bias in our sample arises from the attrition 

encountered between the baseline and first follow-up surveys, which was greater than 

initially expected. In section 6.4, we provide several pieces of evidence that alleviate 

concerns that our results are biased due to attrition.  

 

4.3 Outcomes 

In line with the theoretical model, our outcomes of interest span six domains: health 

knowledge, child and household consumption, labor supply, and child health and morbidity. 

We pool data from the 2008-09 and 2009-10 follow-up surveys for the analysis. Statistics 

pertaining to the outcomes described in this section are provided in section 5. Detail on the 

various measures within each domain is provided in Appendix C. However, two points are 

worth highlighting here: first, child consumption is measured from maternal reports of the 

foods consumed by each child. Second, special care was taken to measure household 

consumption, rather than household expenditures. This is important in this context, since a 

large proportion of consumption is self-produced, rather than purchased from a market.  

 

Within each domain, we have several outcome measures, meaning that we end up with 30 

outcome variables. To limit the problem caused by multiple inference (the probability of 

rejecting a test is increasing in the number of tests carried out), we aggregate the multiple 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
29This is not a problem when we compare household or adult level outcomes since the sample is drawn on from 

a census of women of reproductive age, independent of their fertility. 
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outcome measures within a domain into a summary index, following Anderson (2008). The 

index is a weighted mean of the standardized values of the outcome variables (with outcome 

variables re-defined so that higher values imply a better/more desirable outcome), with the 

weights calculated to maximize the amount of information captured in the index by giving 

less weight to outcomes that are highly correlated with each other. Another benefit of 

averaging across outcomes is that power is increased by reducing measurement error. In 

Table E1 of the Appendix E, we report the outcomes that we use to compute the index 

associated to each specific domain.  

 

By using a summary index, our results provide a statistical test for whether the intervention 

has a “general effect” on each of the six main domains being tested which is robust to 

concerns about multiple inference (Kling et al. 2007; Romano and Wolf 2005, Liebman et al. 

2004). However, because it is not possible to assess the magnitude of the effect from the 

results using the index, we also report the results on individual outcome variables.   

 

5. Results 

In this section, we first show the impacts on all six composite indices, in Table 2. The 

subsequent tables (Tables 3-8) display the more detailed results for the impacts on the sub-

component of each index, for those indices which show an overall statistically significant 

effect30. Note that for ease of reading, each of Tables 3-8 reproduces the summary index from 

Table 2, in its first column. In each table, we show the Huber-White clustered standard errors, 

wild cluster bootstrap-t p-value, randomization inference p-value and intra-cluster coefficient. 

 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
30 Tables E2-E5 of Appendix E displays results for the sub-components of those indices that do not show a 

statistically significant effects of the intervention. 
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5.1$Overall$Findings$

Table 2 displays intervention impacts on all six composite indices, as described in section 

4.3. For child level outcomes, we estimate the impacts on children born after the intervention 

began in July 2005, as these are the ones whose mothers were eligible to be visited by the 

peer counselor. This means that we consider impacts for children aged up to 4.5 years at the 

time of the second follow-up survey. Furthermore, since the intervention was on-going at the 

time of our surveys, we estimate impacts separately for children aged less than 6 months 

(whose mothers were potentially being visited by the counselors at the time of the survey) 

and those aged above 6 months. For household and adult outcomes, we consider impacts on 

our entire sample, regardless of whether or not the household was directly exposed to the 

intervention; and of the household’s fertility choices. 

 

The key rationale underlying the intervention is that households are inefficient producers of 

child nutrition because they do not have the correct knowledge. In other words, the nutrition 

production function that households optimize over is “distorted”. In line with this, the first 

column of Table 2 reports that the intervention improved mothers’ knowledge of child 

nutrition (captured in section 3 by an increase in the parameter θ). These improvements in 

knowledge translated into improved child consumption for both children aged less than 6 

months and those aged over 6 months (columns 2 and 3 in Table 2).31 The positive impacts 

on the latter group imply that positive impacts of the intervention were retained even once the 

peer counselor stopped visiting the household.   

 

Though the intervention provides no monetary or in-kind resources, the household model in 

section 3 predicts that household food consumption should increase.  In line with this, column 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
31 Note child-specific consumption is measured at second follow-up only. 
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4 of Table 2 shows that the intervention increases total household food consumption, 

measured using the composite index, at 5% significance. This increased household 

consumption is funded by improvements in adult labor supply, particularly that of males 

(column 5). Female labor supply is unchanged by the intervention (column 6). This increase 

in labor supply is a clear prediction of the theoretical model (proposition 2), and is also 

intuitive, as the increase in consumption needs to be funded. Moreover, as we will see when 

disaggregating by the sub-components of the index, this is a margin with considerable scope 

to increase labor supply.  

 

A key question of policy interest is whether the observed adjustments on various margins of 

household behavior (increased consumption and labor supply) improved child health. 

Column 8 shows that these changes in behavior translate into improved child physical growth 

for children aged above 6 months. Similarly, column 7 indicates an improvement, albeit not 

statistically significant, in physical growth for younger children. No significant effects are 

found on child morbidity.32  Note though that given the substantial infant mortality reductions 

found by Lewycka et al. 2013, and under the assumption that weaker children are the ones 

more likely to survive as a result of the intervention, the reported effects likely under-

estimate the true effect of the intervention on child health. 

 

While the composite indices allow us to assess the general impact of the intervention of each 

domain, their magnitudes cannot be interpreted, as the weighing used to build the index 

distorts the scale. To shed more light on the magnitude of the effects, we next report and 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
32Table E4 in Appendix E shows that the prevalence of diarrhea decreases for children below 6 months, 

consistent with the earlier result that intake of water and non-maternal milk decreases for this group of children. 
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discuss findings for individual outcomes for those composite indices with a statistically 

significant  effect of the intervention.  

 

5.2 Nutritional knowledge, consumption and labor supply 

The intervention resulted in improvements in the main respondent’s knowledge of child 

nutrition. The index aggregates together the correct responses to 7 questions (reproduced in 

Appendix D). Columns 2-8 of Table 3 report the impact of the intervention in terms of the 

proportion of respondents who correctly answered each of the 7 questions. The results show 

that the knowledge improvements are concentrated on breastfeeding practices when infants 

are ill, and on knowledge of food preparation practices. We note that the intra-cluster 

correlation coefficient is very high for most components of the index, which makes it 

particularly difficult to find statistically significant differences.33   "

 

[TABLE 3 HERE] 

 

Improvements in child consumption were detected both for children below and above 6 

months. For the former group, we see from Table 4 that the improvement comes from a 

reduction in both water intake and non-maternal milk. Table 5 shows that improvements for 

the latter group are driven by substantially higher consumption of beans (which are protein-

rich) in the three days prior to the interview. The intakes of meat and eggs (also protein rich) 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
33 Note that the number of observations is smaller than for other household level variables. Since we ask 

different knowledge questions in the first and second follow-ups, we do not pool the data from both waves and 

rather use the responses from both waves simultaneously to build the index so as to maximize its informational 

content.  
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are also positive, although not statistically significant, probably because of the reduced 

sample size (child food intake was only collected in the second follow-up survey). 

 

[TABLES 4 AND 5 HERE] 

 

We saw from Table 2 that the intervention resulted in improvements in overall household 

food consumption. Columns 2 – 5 of Table 6 show that the improvement is due to an increase 

in consumption of proteins, and of fruit and vegetables. Focusing on proteins, which are 

particularly important for child growth, we decompose the effect on the extensive and 

intensive margin (calculations available upon request). Around 26% of households do not 

report consuming any protein-rich foods in the 7 days prior to our survey; hence there is a 

clear opportunity for improvement in the extensive margin.!Indeed,!the extensive margin is 

responsible for 1/3 of the consumption increase.  The increase in the intensive margin 

corresponds to 210g of meat/poultry extra and 640g beans extra per child per month. To put 

these quantities in perspective, a toddler will usually have 50 grams of beans in a portion, 

together with some vegetables and carbohydrates.  

 

[TABLE 6 HERE] 

 

A number of factors are likely to explain this substantial increase in food consumption: first, 

the time span of the intervention is sufficiently long (it had been already up and running for 

over 3.5 years by the time consumption was first measured); second, the intervention was 

intensive and involved up to 5 one-to-one home visits; third, preliminary results available 

upon request indicate spill-over effects to children not directly targeted by the intervention: 

the diets of older siblings of the directly exposed children also benefited from the nutrition 



28"
"

information spread in the treated communities. Fourth, as we have seen from the labor supply 

results in Table 2, there was scope to increase labor supply to fund the increased 

consumption.  

 

Table 2 also showed that male labor supply increased as a result of the intervention. Looking 

at the sub-components of the index - probability of any work, probability of having at least 

two jobs, and the number of hours worked - Table 7 reports positive effects of the 

intervention on all three, though only statistically significant for the probability of having at 

least two jobs. However, it should be noted that the intra-cluster correlation for the number of 

hours worked is much higher than for the probability of having at least two jobs (0.10 vs. 

0.036), which greatly reduces our power to find a significant effect of the intervention on the 

former. 

[TABLE 7 HERE] 

 

The finding that the intervention increases male labor supply is consistent with it being a 

margin with considerable scope for increase. Indeed, previous research in Malawi has shown 

that labor supply is upward sloping rather than fixed (Michaelowa et al. 2010;  Goldberg 

2013). In the data that we use, only 12% of males in control clusters have a second job,  most 

of them on non-agricultural self-employment activities.34 Moreover, there is considerable 

entry into and exit from secondary jobs: among those with (without) a secondary job at first 

follow-up, 33% (7%) have one by the time of the second follow-up, a year later. While an 

extensive literature has documented increases in labor supply in response to increases in 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
34 Over half of these second jobs involve employment in own/family business, a quarter involve work on the 

family farm, and the rest involve work as an employee in public/private sector (~20%) or on someone else’s 

farm (<5%). 
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uncertainty and income shocks in developing countries (Saha 1994, Kochar 1999, Rose 2001, 

Lamb 2003, Kijima 2006, Ito and Takashi 2009), this is the first paper to document that labor 

supply responds to changes in the perceived child health production function.  

 

This increase in labor supply was a clear prediction of the theoretical model (proposition 2). 

However, beyond the model, there are important features of Malawian society that are likely 

to be contributing to the finding that male labor supply increases. In particular, the main 

ethnic group in the Mchinji District - the Chewa - is a matrilocal and matrilineal group, 

meaning that men usually move to their wives’ villages on marriage, and that wealth 

(predominantly land) is often held by women and passed on through the matriline (Phiri 

1983, Sear 2008). As a consequence, women have more power and authority than in 

patrilineal societies common across most of Africa and South Asia (Reniers 2003). Indicative 

of this empowerment, all three measures of labor supply - work participation, the likelihood 

of having two jobs and hours worked - are strikingly similar for males and females (last rows 

of Table 7 and Table E2).35 Finally, mothers are generally the main caregivers of children. 

Thus, the finding that male labor supply increases in response to mother receiving 

information on child nutrition is in line with the cultural background in this setting (mothers 

having enough power so as to persuade the father to work more).  

 

5.2 Child Health  

Table 2 documented improvements in child physical growth for children older than 6 months. 

Looking at the sub-components of the physical growth index in Table 8, we see that the 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
35This has been documented by others for the Malawian context including Goldberg (2013) and 2004 DHS 

(pages 34-36, Malawi DHS 2004 Report). In the also matrilineal Khasi society (India), women and men have 

similar labor supply profiles (Gneezy, Leonard, and List 2009)."
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improvement in growth is due to an increase in the average height-for-age z-score by 0.27 of 

a standard deviation of the WHO norm.36 This is an important increase, and corresponds in 

magnitude to 65% of the average effect size obtained with the direct provision of food in 

food-insecure populations (Bhutta et al. 2008).  

 

[TABLE 8 HERE] 

 

Clearly, we cannot disentangle whether the improvement in physical growth is due to the 

reduction in the intake of liquids other than breast milk when the child was less than 6 

months, or to the improvement in child food intake after age 6 months, or a combination of 

both. Our key message of the paper is that households responded to the information provided 

by increasing consumption and working more, to improve child health, which is the first such 

finding in this literature. 

 

5.3 Monte Carlo on inference methods 

As previously discussed, two leading methods have been proposed to carry out inference 

when the number of clusters is small: wild cluster bootstrap-t and randomization inference. 

However, there is limited evidence on how these two methods compare and in what situations 

they perform well. For instance, Cameron, Gelbach and Miller (2008) present some Monte 

Carlo simulations showing the performance of the wild cluster bootstrap-t and a range of 

other methods but randomization inference. However, their design differs from ours in terms 

of sample size and intra-cluster correlation, which are presumably important drivers of the 

size of bias in the Huber-White clustered standard errors. Here, we present the results of 
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
36 As is common with anthropometric data from developing countries, the SD of the height-for-age z-score in 

our sample is larger than in the WHO Reference Population (in our case the SD is 1.5 instead of 1), and so this 

increase corresponds to a 18% of a SD increase using the SD for our sample.""
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Monte Carlo experiments specifically designed to be informative about our main regressions 

(those of Table 2).  

 

We present Monte Carlo results for 9 different Data Generating Processes (DGPs), each 

corresponding to a column of Table 2 (except for less than six months anthropometrics for 

which the Monte Carlos could not be performed due to an intra-cluster correlation of zero, 

once covariates were accounted for). Each DGP uses the same sample and covariates as in 

Table 2, and are parameterized to replicate the same correlations between the outcome 

variable and the covariates (except for the intervention variable) as in Table 2 (more details 

on the design of the Monte Carlo experiments are provided in the Appendix B). The effect of 

the binary intervention variable, Tc, is set at zero for all units. That is, the DGP is such that 

null hypothesis of no intervention effect, both on average and for every unit, is true. Each 

Monte Carlo experiment includes a cluster level random effect constructed such that the 

intra-cluster correlation of the simulated data matches that in the actual data. 

 

For each of the DGPs discussed above, Table 9 show the test size associated with testing the 

null hypothesis of no effect with 5% significance. The first row shows the test size when we 

use cluster-correlated Huber-White standard errors to form the t-statistic. As expected, the 

test sizes are considerably larger than 0.05 and hence the test clearly over-rejects the null. 

Randomization inference provides test sizes that are generally statistically close to the 

nominal test size, and if anything slightly below it. The results of the wild-t bootstrap 

procedure are also quite close to the nominal size, but slightly above it for some cases 

(although not by much). Because one inference procedure yield test sizes slightly above the 

nominal size and the other one slightly below, it is reassuring that we obtain very similar p-

values for the different outcome variables across Tables 2-8.  These results are informative 
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for other researchers not only because it extends the characteristics of the Data Generating 

Processes in which these procedures are shown to work, but also because it compares hand by 

hand the two leading approaches when carrying out inference under a small number of 

clusters, which, to our knowledge has not been done so far.  

 

[TABLE 9 HERE] 

 

6. Alternative Explanations 

We have argued, using the model of section 3, that consumption and labor supply increase 

because the productivity of child consumption (in terms of child health) increased as a result 

of the intervention. Here we consider four alternative explanations for our findings. The first 

is that increases in adult labor supply are driven by improvements in adult health that are 

somehow generated by the intervention; second, the intervention decreased fertility in 

intervention clusters, potentially yielding an increase in child quality and thus health and 

nutrition; third, information provided on issues other than child nutrition could have 

generated the observed improvements in child health; and fourth, the high attrition rates 

encountered between the baseline and first follow-up. We discuss each in turn and provide 

evidence to rule them out as explanations for the observed findings. 

 

6.1 Adult Health 

Whilst it is possible that increases in adult labor supply are driven by improvements in adult 

health that are somehow generated by the intervention, we believe this to be unlikely since 
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the advice provided is targeted specifically at children’s nutrition, which is unlikely to yield 

commensurate improvements in adult health – as Table 10 attests to.37  

 

[TABLE 10 HERE] 

 

6.2 Fertility and Family Planning 

A second explanation for the increased parental investment into child nutrition and improved 

child health is that the intervention decreased fertility in intervention clusters, potentially 

yielding an increase in child quality (Becker and Tomes, 1976).  A reduction in fertility could 

be generated through two channels: first, indirectly, by reducing infant mortality and as a 

result inducing households to reduce their demand for children; or second, directly, through 

the family planning component of the intervention.  

 

To investigate these potential fertility effects, we examine the effect of the intervention on the 

use of modern family planning methods, as well as the number of children born to women in 

our sample since the intervention started as reported in the MaiMwana Health Surveillance 

System.38 Results are displayed in Table 11. The coefficients are small and far from 

significant at conventional levels, despite the low levels of intra-cluster correlation. The lack 

of effects on family planning is consistent with conversations with program officials, who 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
37 The non-significant effects on the sub-components of the health indices are shown in Table E5 of Appendix 

E. 

38 The MaiMwana Health Surveillance System interviews the mothers of all children born in the 24 clusters 

since 2005 at 1 month and 7 months of age (see Lewycka et al. 2013 for more details). This source therefore 

provides a more complete picture of births in the study areas than cross-sectional surveys. Nevertheless, there 

may still be selection from differential mortality of infants in the first month life as a result of the intervention.  
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indicated that this component was not effective because counselors were uncomfortable 

discussing this issue; it is also consistent with results of Lewycka et al. (2013).  

 

[TABLE 11 HERE] 

 

6.3 Other aspects of the intervention 

As is often the case with public health programs, the intervention provided information on 

issues other than infant feeding practices which could also have influenced child health: 

encouragement of vaccination of infants, promotion of HIV testing, and information on 

hygiene practices. Though these additional aspects of the intervention could improve child 

health, it is much more difficult to believe that they could increase household food 

consumption and labor supply, which are the key findings of this paper.  

 

Lewycka et al. (2013) find that BCG vaccination rates increased due to the intervention, but 

polio vaccination rates actually decreased, and there was no change in pentavalent 

vaccination rates. Moreover, vaccination rates in the control clusters are high and differences 

between intervention and control (even if statistically significant) are small (e.g. 98% vs. 95% 

for BCG).  Furthermore, Lewycka et al. (2013) find no significant effect of the intervention 

on antenatal HIV counseling and testing.39 This is not all that surprising, since the 

intervention only encouraged women to get tested for HIV, and did not provide any resources 

or incentives to overcome the two main constraints in this setting - direct costs of getting 

tested (e.g. costs of travelling to usually distant clinics) and stigma effects of getting tested - 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
39 Interestingly, they find that HIV testing rates increased substantially over the intervention period (2005-2008) 

in both intervention and control clusters, which may be a consequence of government policy mandating HIV 

testing of pregnant women."
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both of which are shown to be important in this context by Thornton (2008) and Ngatia 

(2011) respectively.  Finally, our finding that the intervention did not reduce the prevalence 

of diarrhea for children aged between 6 and 53 months and adults (Table E4) suggests that 

the component on hygiene information probably had limited success.  

 

For these reasons, we believe that the main factor driving the results reported in Section 5 is 

the information provided on child nutrition, rather than any other aspects of the intervention.   

 

6.4 Attrition 

One concern is that our results may be biased due to attrition between the baseline census 

(2004) and the two follow-up surveys (2008-09, 2009-10). Although attrition is related to 

observables (Table E6 of Appendix E), they key is that it is the same in treatment and control 

(follow-up rates of 65% and 67% in intervention and control clusters respectively). Moreover 

we showed in Table 1 that both the sample drawn and the sample successfully interviewed 

are well-balanced along observed characteristics. However a concern might remain that 

attrition induced differences in unobserved variables, potentially biasing our findings.  

 

In particular, our estimates on child physical growth (Table 8) could be biased upwards if 

households with worse health endowments were more likely to attrit from intervention than 

from control clusters.  However, when we repeat the analysis in Table 8 for older children 

living in intervention clusters (born before July 2005, hence whose mothers were not eligible 

to receive the counselors’ visits when they were young infants), we find that their health 

status is worse (though not significantly so) in intervention than in control clusters. This 

provides suggestive evidence that those who attrited from intervention clusters are, if 
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anything, relatively healthier than those attriting from control clusters (results available upon 

request). 

 

We also address the issue of attrition directly using a Heckman selection model (Heckman, 

1979). A first stage Probit model estimates the probability that a sampled woman (and 

therefore her household) was successfully interviewed as a function of the intervention and 

characteristics of the assigned interviewer at first follow-up (given that the majority of 

attrition occurred between baseline and first follow up). Estimates from the first stage yield 

an inverse-Mills Ratio, which enters as an additional regressor in the second stage - equation 

(5) augmented with the inverse Mills Ratio - thereby correcting for selection due to attrition. 

 

The interviewer characteristics provide a source of exogenous variation in the first stage (see 

for instance Zabel 1998, Fitzgerald et al. 1998). Specifically, we use the number of children 

aged 0-3 in the interviewer’s household and the size of the interviewer’s plot of land, both of 

which proxy for the ease and intensity with which interviewers were able to track 

respondents. Individuals with young children may be more intrinsically motivated to take part 

in a study on child health, and/or they may know many other community members with 

young children; interviewers with a larger plot of land have a higher opportunity cost of time. 

Both of these factors turn out to be jointly strong predictors of whether or not a woman is 

interviewed (p-value of joint significance <0.01). A key identification assumption is that 

interviewer characteristics are uncorrelated with respondents’ characteristics and outcomes. 

We believe this assumption to be reasonable in this context.40 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
40A concern noted by Thomas et al. (2012) is that good interviewers may be assigned to the most difficult 

clusters. In our case this concern is not relevant due to the process through which interviewers were allocated to 

clusters. Clusters were paired so as to include an intervention and a control cluster in the pairing. Among 
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!

Table 12 reports the estimates of the program effects for two outcomes, household 

consumption and main respondent’s labor supply.41 As can be seen, the selection corrected 

estimates (middle panel) are very close in magnitude to the OLS estimates reported earlier 

(repeated here in the top panel), thereby providing additional evidence that our results are not 

driven by attrition bias. 

 

[TABLE 12 HERE]"

7.$$Conclusion$$

In this paper, we use exogenous variation in mothers’ knowledge of the child health 

production function induced by a cluster randomized intervention in Malawi, to establish 

empirically that improving knowledge of the child health production function influences a 

broad range of household behaviors.  

 

We first establish empirically that the intervention improved mothers’ knowledge on 

nutrition. Using a simple theoretical model, we show that households should react to this 

improved knowledge by increasing consumption (both child and household) and increasing 

adult labor supply. In line with the predictions of the model, our empirical results show that 

households act on improved nutrition-related information not only by changing the 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
potential interviewers residing in either of the two clusters, the best was selected as an interviewer to cover the 

pair of clusters (and hence the interviewer was not allocated to the area from a central pool). The fact that there 

was just 1 interviewer per pair of clusters makes it very unlikely that chosen interviewers were representative of 

the population of the cluster. "

41The baseline census does not include information on men or individual children, so we do not know who 

attrited. "
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composition of consumption but also by increasing total food consumption, which yields 

improvements in child height. Hence, in line with basic economic theory,  labor supply 

increases to fund the increase in consumption (especially as the intervention did not provide 

any monetary or in-kind resources). This finding of a non-health outcome, labor supply, 

being linked to how parents perceive the child health production function, is a novel finding 

and a key contribution to this literature.  

 

The paper conducts very careful inference, using the two leading approaches for inference in 

studies with small numbers of clusters - randomization inference and wild cluster bootstrap-t. 

This is the first paper to show the performance of both methods alongside each other. We 

show that both perform quite well in our data, with a slight tendency for randomization 

inference to either do very well or slightly under-reject (and the converse for wild-bootstrap 

cluster-t).  

 

We hypothesize that two issues might have contributed to the success of the intervention. 

First, the provision of information was not merely a one-off event in the intervention areas, 

but a sustained activity, still in place, that serves to spread information and to remind 

households of the importance of child nutrition on an ongoing basis.  This may also explain 

why households adjusted on non-health margins to adhere to advice provided by this nutrition 

intervention and may shed light on why some health information campaigns have been 

successful, while others have failed. Second, the main ethnic group in rural Malawi, the 

Chewa, is a matrilineal one, in which women are likely to have more bargaining power and 

authority within the household than women in patrilineal societies common in much of the 

rest of Africa and South Asia. This higher female empowerment might indicate that women 

are in a good position to implement the recommendations given by the counselors as well as 
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to encourage fathers to work more. It is not clear whether such responses may emerge in 

other settings and we see this as an area worthy of further investigation.  
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Tables 



Table 1: Baseline Sample Balance

Control 
Group

Difference: 
Treatment - 

Control p-value
Control 
Group

Difference: 
Treatment - 

Control p-value
Woman's Characteristics
Married (dv = 1) 0.615 -0.021 0.386 0.661 -0.034 0.184
Some Primary Schooling or Higher 0.707 0.033 0.402 0.682 0.040 0.340
Some Secondary Schooling or Higher 0.066 0.010 0.535 0.060 -0.007 0.545
Age (years) 24.571 -0.180 0.637 25.492 -0.429 0.376
Chewa 0.948 -0.044 0.330 0.957 -0.050 0.246
Christian 0.977 0.006 0.476 0.979 0.008 0.336
Farmer 0.661 -0.075 0.108 0.688 -0.060 0.128
Student 0.236 0.015 0.438 0.204 0.022 0.274
Small Business/Rural Artisan 0.036 0.030 0.129 0.037 0.024 0.220

Household Characteristics
Agricultural household 0.995 -0.005 0.471 0.995 0.002 0.591
Main Flooring Material: Dirt, sand or dung 0.913 -0.041 0.232 0.916 -0.027 0.474
Main roofing Material: Natural Material 0.853 -0.018 0.697 0.857 -0.004 0.891
HH Members Work on Own Agricultural Land 0.942 -0.057 0.124 0.950 -0.056 0.120
Piped water 0.011 0.040 0.314 0.009 0.032 0.340
Traditional pit toilet (dv = 1) 0.772 0.054 0.218 0.791 0.054 0.182
# of hh members 5.771 0.066 0.817 5.848 0.132 0.863
# of sleeping rooms 2.116 0.199 0.038* 2.152 0.166 0.128
HH has electricity 0.002 0.007 0.166 0.002 0.004 0.338
HH has radio 0.630 0.030 0.408 0.641 0.015 0.709
HH has bicycle 0.509 0.015 0.643 0.512 0.008 0.843
HH has motorcycle 0.008 0.001 0.925 0.007 0.002 0.779
HH has car 0.006 -0.002 0.612 0.007 -0.003 0.298
HH has paraffin lamp 0.925 0.032 0.262 0.926 0.036 0.178
HH has oxcart 0.058 -0.015 0.204 0.059 -0.022 0.090+
N 1248 1248 846 814

Notes to Table: + indicates significant at the 10% level, * indicates significant at the 5% level. p-values reported here are computed using the wild cluster
bootstrap-t procedure as in Cameron et al. 2008, explained in section 4.1. Full Sample includes all women (and their households) originally drawn to be part
of the 2008-09 survey. Interviewed Sample includes women (and their households) actually interviewed in 2008-09 (and used in the analysis). 

Full Sample Interviewed Sample



Table 2: Effects on the summary indices
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Main 
Respondent's 
Knowledge on 

Nutrition
Household Food 

Consumption

 < 6 months  > 6 months
Adult 
Males

Adult 
Females

 < 6 
months

 > 6 
months

 < 6 
months

 > 6 
months

Tz 0.169+ 0.250* 0.143+ 0.218* 0.262+ 0.018 0.066 0.102* 0.058 -0.013
Standard Error [0.086] [0.098] [0.074] [0.082] [0.131] [0.165] [0.056] [0.036] [0.070] [0.102]
Wild Cluster Bootstrap p-value {0.058} {0.016} {0.076} {0.018} {0.086} {0.955} {0.293} {0.022} {0.438} {0.861}
Randomization Inference p-value {0.065} {0.028} {0.099} {0.037} {0.062} {0.903} {0.366} {0.035} {0.509} {0.920}

Observations 1512 151 1280 3200 3642 4138 312 2175 376 2356
R-squared 0.107 0.214 0.099 0.063 0.183 0.136 0.062 0.026 0.059 0.053
IntraCluster Correlation 0.169 0.041 0.085 0.087 0.146 0.140 0.019 0.021 0.021 0.150
Mean Control Areas -0.040 -0.109 -0.054 -0.099 -0.135 -0.050 0.245 0.266 -0.034 0.022

Labor Supply
Child Physical 

GrowthChild Food Consumption
Child Morbidity 

(reversed)

Notes to Table: Standard errors computed using the cluster-correlated Huber-White estimator are reported in brackets, with clustering at the level of the cluster (at which treatment was assigned);
wild cluster bootstrap-t p-values and randomization inference p-values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. All regressions include controls for cluster-level education and Chewa
ethnicity in 2004 and dummies for the month of interview. All regressions other than that in column 4 includes controls for age and age-squared. Outcome variables are summary indices of
variables relating to that domain of outcomes. They are constructed as described in section 4.4. Higher values of the index in columns 9 and 10 indicate less morbidity. The component variables for
each index are outlined in Table A2 in the appendix. Sample in columns 1 and 4 includes all households in our sample, sample in columns 2, 3 and 7-10 include children born after the intervention
began in July 2005, and so who were aged between 0-53 months at the time of interview. Sample in columns 5 and 6 includes all males and females aged 15-65 years in our sample. 



Table 3: Components of Knowledge Index

Summary 
Index

Breastfeeding 
when infant 

has diarrhoea

Are biscuits or 
groundnuts/soya 
more nutritious 
for kids aged 6 
months-3 yrs?

From what 
age should 

solid foods be 
given 

infants?

How should 
an HIV 
positive 

woman feed 
her baby?

Is nsima or 
porridge 

more 
nutritious for 

an infant 
aged > 6 
months?

What is the best 
way of cooking 

fish with 
porridge for an 
infant aged > 6 

months?

Should eggs 
be given to an 
infant aged > 

9 months?
[1] [2] [3] [4] [5] [6] [7] [8]

Tz 0.169+ 0.253+ -0.052 0.037 0.138 -0.101 0.067** 0.104
Standard Error [0.086] [0.115] [0.041] [0.026] [0.150] [0.078] [0.019] [0.069]
Wild Cluster Bootstrap p-value {0.058} {0.084} {0.290} {0.166} {0.444} {0.210} {0.002} {0.186}
Randomization Inference p-value {0.065} {0.028} {0.222} {0.292} {0.399} {0.179} {0.008} {0.192}

Observations 1512 1512 1512 1512 1512 1512 1512 1512
R-squared 0.11 0.10 0.05 0.04 0.04 0.07 0.04 0.02
IntraCluster Correlation 0.169 0.277 0.082 0.049 0.408 0.183 0.057 0.107
Mean, Control -0.04 0.217 0.938 0.88 0.393 0.857 0.026 0.719
Notes to Table: All regressions include controls for age, age-squared, cluster-level education and Chewa ethnicity in 2004 and dummies for the month of interview.Standard errors computed
using the cluster-correlated Huber-White estimator are reported in brackets, with clustering at the level of the the cluster (at which treatment was assigned); wild cluster bootstrap-t and
randomization inference p-values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. Sample contains all households in our sample with a female main respondent. "Summary Index" aggregates
the measures in columns 2-8 using the method described in section 4.3. The variables in columns 2-8 are dummy variables equal to 1 if the respondent answered correctly. Questions in
columns 2-6 and column 8 were multiple choice questions where respondents chose 1 correct answer from 3-5 options. Question in column 7 was an open-ended question, with interviewers
marking correctly answered options. 



Table 4: Intake of Liquids by Children Aged < 6 months.
[1] [2] [3]

Summary Index Water Milk other than maternal

Tz 0.250* -0.144+ -0.082*
Standard Error [0.098] [0.081] [0.034]
Wild Cluster Bootstrap p-value {0.016} {0.106} {0.020}
Randomization Inference p-value {0.028} {0.077} {0.112}

Observations 151 359 151
R-squared 0.214 0.249 0.087
IntraCluster Correlation 0.0405 0.024 0.060
Mean, Control -0.109 0.488 0.101

Notes to Table: All regressions include controls for age, age-squared, gender, cluster-level education and Chewa ethnicity in 2004 and
dummies for the month of interview. Standard errors computed using the cluster-correlated Huber-White estimator are reported in brackets,
with clustering at the level of the the cluster (at which treatment was assigned); wild cluster bootstrap-t and randomization inference p-values
in curly brackets. ** p<0.01, * p<0.05, + p<0.1. Sample includes children aged less than 6 months. "Summary Index" aggregates the measures
in columns 1-2 using the method described in section 4.3. "Water" is an indicator for whether the child had any water in the 3 days prior to the
survey, "Milk other than maternal" is an indicator (measured in second follow up only) for whether the child had milk other than breastmilk in
the 3 days prior to the survey.



Table 5: Effects on Child Food Consumption (>6 months)

Summary 
Index Any beans Any meat Any fish Any eggs

Any 
vegetables Any fruit Any nsima

Any 
porridge

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Tz 0.143+ 0.225** 0.091 0.007 0.026 -0.010 -0.011 0.025 0.094
Standard Error [0.074] [0.056] [0.096] [0.098] [0.052] [0.020] [0.057] [0.015] [0.064]
Wild Cluster Bootstrap p-value {0.076} {0.006} {0.563} {0.927} {0.637} {0.643} {0.825} {0.134} {0.246}
Randomization Inference p-value {0.099} {0.007} {0.279} {0.947} {0.624} {0.627} {0.869} {0.142} {0.261}

Observations 1280 1288 1287 1289 1288 1,291 1,288 1,290 1,294
R-squared 0.10 0.07 0.02 0.01 0.011 0.141 0.153 0.143 0.035
IntraCluster Correlation 0.085 0.113 0.085 0.111 0.0502 0.0181 0.0923 0 0.136
Mean, Control -0.0541 0.258 0.291 0.463 0.164 0.959 0.7 0.93 0.8
Notes to Table: All regressions include controls for age, age-squared, gender, cluster-level Chewa ethnicity and education in 2004 and dummies for the month of interview. Standard
errors computed using the cluster-correlated Huber-White estimator are reported in brackets, with clustering at the level of the the cluster (at which treatment was assigned); wild cluster
bootstrap-t and randomization inference p-values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. Sample contains all children born after July 2005, and who were aged between 6 and
53 months at time of survey. Data on child solid intake collected at second follow up only. "Summary Index" aggregates the measures in columns 2-9 using the method described in
section 4.3. The variables in columns 2-9 are dummy variables equal to 1 if the corresponding food was consumed by the child in the 3 days prior to the survey. 



Table 6: Household Consumption
[1] [2] [3] [4] [5]

Summary 
Index Cereals Proteins

Fruit and 
Vegetables Other Foods

Tz 0.218* -9.878 128.359* 269.819+ 60.453
Standard Error [0.082] [52.450] [54.798] [108.600] [33.561]
Wild Cluster Bootstrap p-value {0.018} {0.931} {0.022} {0.060} {0.150}
Randomization Inference p-value {0.037} {0.952} {0.016} {0.042} {0.020}

Observations 3200 3205 3202 3204 3204
R-squared 0.063 0.118 0.02 0.195 0.024
IntraCluster Correlation 0.087 0.074 0.042 0.172 0.053
Mean Control Areas -0.10 606.00 349.80 679.70 149.70

Per Capita Monthly Food Consumption for:

Notes to Table: Standard errors computed using the cluster-correlated Huber-White estimator are reported in brackets, with
clustering at the level of the cluster (at which treatment was assigned); wild cluster bootstrap-t and randomization inference p-
values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. All regressions include controls for age, age-squared, cluster-level
education and Chewa ethnicity in 2004 and dummies for the month of interview. Coefficients in columns 2-6 are in terms of
Malawi Kwacha. (The average exchange rate to the US Dollar was approx. 140MK = 1 US$ at the time of the surveys). "Food
Index" is an index of the food items in cols. 2-5, constructed as described in section 4.3. "Cereals" includes consumption of rice,
maize flour and bread, "Proteins" includes consumption of milk, eggs, meat, fish and pulses, "Fruit and Vegetables" includes
consumption of green maize, cassava, green leaves, tomatoes, onions, pumpkins, potatoes, bananas, masuku, mango, ground nuts
and other fruits and vegetables, "Other Foods" includes cooking oil, sugar, salt, alcohol and other foods.



Table 7: Effects on Labor Supply

[1] [2] [3] [4]

Summary 
Index Works

Has at 
least 2 
jobs

Weekly 
Hours 

Worked

Tz 0.262+ 0.096 0.072* 4.31
Standard Error [0.131] [0.078] [0.028] [2.918]
Wild Cluster Bootstrap p-value {0.074} {0.303} {0.020} {0.230}
Randomization Inference p-value {0.062} {0.251} {0.057} {0.202}

Observations 3642 3961 3958 3642
R-squared 0.183 0.17 0.05 0.16
IntraCluster Correlation 0.146 0.208 0.036 0.100
Mean, Control -0.135 0.836 0.122 25.740

Male Adults

Notes to Table: All regressions include controls for age, age-squared, cluster-level education and
Chewa ethnicity in 2004 and dummies for the month of interview. Standard errors computed using
the cluster-correlated Huber-White estimator are reported in brackets, with clustering at the level of
the the cluster (at which treatment was assigned; wild cluster bootstrap-t and randomization
inference p-values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. Sample includes all males aged
15-65 years. "Summary Index" contains the variables in columns 2-4 and is computed using the
method described in section 4.3. "Works" in an indicator of whether individual had an income-
generating activity at the time of the survey, "Has at least 2 jobs" is an indicator for whether
individual has 2 income generating activities, "Weekly Hours worked" give the total hours worked
in the week prior to the survey on both income generating activities.



Table 8: Intervention Effects on Child Physical Growth, Children aged > 6 months
[1] [2] [3] [4]

Summary Index Height for Age
Healthy weight 

for age
Healthy weight 

for height
Tz 0.102* 0.271* 0.030 0.048
Standard Error [0.036] [0.102] [0.019] [0.027]
Wild Cluster Bootstrap p-value {0.022} {0.022} {0.150} {0.132}
Randomization Inference p-value {0.035} {0.055} {0.312} {0.147}

Observations 2175 2192 2265 2217
R-squared 0.026 0.046 0.024 0.029
IntraCluster Correlation 0.021 0.022 0.018 0.017
Average, Control 0.266 -2.338 0.817 0.845

Notes to Table: Standard errors computed using the cluster-correlated Huber-White estimator are reported in brackets, with clustering at the 
level of the the cluster (at which treatment was assigned); wild cluster bootstrap-t p-values in curly brackets. ** p<0.01, * p<0.05, + p<0.1.
All regressions include controls for age, age-squared, gender, dummies for the month of interview and cluster-level education and Chewa
ethnicity in 2004. Sample includes children born after July 2005 and who were aged between 6 and 53 months at time of measurement.
"Summary Index" contains the variables in columns 2-4 and is computed using the method described in section 4.3. "Height-for-Age"is a
standardised z-score relative to the WHO reference population, "Healthy weight for age" is a dummy variable =1 if child's weight-for-age z-
score is not more than 2 std deviations above or below the WHO reference population and "Healthy weight for height" is a dummy variable
=1 if child's weight-for-height z-score is within 2 std deviations of the WHO reference population. 



Table 9: Test size obtained from Monte Carlo experiments
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Test size ↓

Main 
Respondent's 
Knowledge on 

Nutrition

Household 
Food 

Consumption

 < 6 months
 > 6 

months
Adult 
Males

Adult 
Females

 < 6 
months

 > 6 
months

 < 6 
months

 > 6 
months

Method
Huber-White Clustered Standard Errors 0.093* 0.088* 0.072* 0.078* 0.081* 0.085* n/a 0.086* 0.108* 0.084*
Wild Cluster Bootstrap-t 0.048 0.061 0.061* 0.065 0.055 0.047 n/a 0.070* 0.073* 0.051
Randomization Inference 0.039 0.046 0.052 0.034* 0.05 0.041 n/a 0.047 0.037 0.047

IntraCluster Correlation in Data 0.169 0.041 0.033 0.087 0.146 0.140 0.019a 0.020 0.021 0.150

Child Food Intake Labor Supply
Child Physical 

Growth
Child Morbidity 

(reversed)

Notes to Table: Table reports test sizes from Monte Carlo simulations conducted using the 3 different inference methods above. Simulations conducted according to the procedure described in

Appendix B. Nominal test size for each simulation is set at 0.05. * Indicates statistically different test size from 0.05 at the 5% level of significance. a For the outcome "Improvements in Child Physical
Growth" for children aged < 6 months, the intra-cluster correlation for the outcome variable once the effects of covariates are removed was 0 and thus we did not conduct the Monte Carlo simulations
for this outcome. Higher values of the index in the last two columns indicate less morbidity. 



Table 10: Effects on Adult Health
[1] [2]

Summary 
Index

Summary 
Index

Males Females
Tz -0.007 -0.020
Standard Error [0.044] [0.038]
Wild Cluster Bootstrap p-value {0.873} {0.693}
Randomization Inference p-value {0.899} {0.685}

Observations 3726 4226
R-squared 0.022 0.040
IntraCluster Correlation 0.073 0.063
Mean, Control 0.004 0.012

Notes to Table: All regressions include controls for age, age-squared, gender,
cluster-level education and Chewa ethnicity in 2004 and dummies for the month of
interview. Standard errors computed using the cluster-correlated Huber-White
estimator are reported in brackets, with clustering at the level of the cluster (at
which treatment was assigned); wild cluster bootstrap-t and randomization
inference p-values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. Summary
Index calculated based on 8 outcome measures outlined in Table B2 using the
method described in section 4.3.



Table 11: Intervention Effects on Family Planning and Fertility 
[1] [2]

Use of any modern 
family planning 

method

Number of 
children since 

July 2005
Tz 0.023 -0.049
Standard Error [0.052] [0.040]
Wild Cluster Bootstrap p-value {0.667} {0.300}
Randomisation Inference p-value {0.652} {0.525}

Observations 2809 1655
R-squared 0.065 0.089
IntraCluster Correlation 0.036 0.014
Mean, Control 0.378 0.583

Notes to Table: Standard errors computed using the cluster-correlated Huber-White
estimator are reported in brackets, with clustering at the level of the cluster (at which
treatment was assigned); wild cluster bootstrap-t p-values in curly brackets. ** p<0.01, *
p<0.05, + p<0.1. All regressions includes controls for age, age-squared, and (family
planning regression only) for cluster-level Chewa ethnicity and education in 2004 and
dummies for the month of interview. "Number of children since July 2005" is the number
of children born to the main respondent and surveyed at age 1 month since July 2005;
Column 1 sample includes women 17-43 years old (when available, both waves responses
are included). Sample in column 2 includes all women surveyed as main respondents in
the 2008 survey, and comes from the Mai Mwana Health Surveillance System, which
measures at age 1 month all children born to these women since the start of the
intervention 



Table 12: Heckman selection equation results
[1] [2]

Food Index
Main Respondent Labor 

Supply
Ordinary Least Squares
Tz 0.218* -0.077
Standard Error [0.082] [0.187]
Wild Cluster Bootstrap p-value {0.018} {0.769}
Randomisation Inference p-value {0.037} {0.659}

Observations 3200 2938
R-squared 0.063 0.088
IntraCluster Correlation 0.087 0.165
Mean Control Areas -0.10 -0.03

Heckman Selection Model for Attrition
Tz 0.216* -0.096
Standard Error [0.108] [0.234]
Inverse Mills ratio -0.683 -0.700

[0.463] [0.866]

Selection Equation (coefficients)
Tz -0.08 -0.061

[0.141] [0.141]
# children 0-3 0.221* 0.252**

[0.092] [0.090]
land size (acres) -0.017 -0.015

[0.014] [0.015]
Observations 4986 4621

Notes to Table: Standard errors computed using the cluster-correlated Huber-White estimator are reported
in brackets, with clustering at the level of the cluster (at which treatment was assigned); wild cluster
bootstrap-t p-values in curly brackets. Standard errors for Heckman Selection model computed using a
block bootstrap method. ** p<0.01, * p<0.05, + p<0.1. Regressions include controls for dummies for the
month of interview and cluster-level education and Chewa ethnicity in 2004. Column 2 regression
includes controls for age and age-squared. Excluded variables in the second stage of the Heckman
Selection Model are "# children 0-3" (number of children aged 0-3 of first follow-up survey interviewer)
and "land size(acres)" (land size in acres of first follow-up survey interviewer). 
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Appendix B. Monte Carlo Simulation 

Standard errors based on cluster-correlated Huber-White standard errors might be too 

small when the number of clusters is relatively small (Donald and Lang 2001, 

Wooldrige 2004, Duflo et al. 2004, and Cameron et al. 2008). This might lead to 

over-rejection of the null hypothesis that the coefficient of interest is zero when it is 

correct. To deal with this issue, in the paper we report p-values for the null hypothesis 

of no effect using the two leading approaches for valid inference in this case: wild 

cluster bootstrap-t (Cameron et al. 2008) and randomization inference (Fisher 1935, 

Rosenbaum 2002). Since there is limited evidence on when these approaches are valid 

(knowledge on the performance of the wild bootstrap-t is based on simulations from a 

dataset with features which may not match those of the data we use), in section 5.3 we 

provide the results of a Monte Carlo simulation to estimate the test size (the 

probability that the null hypothesis is rejected when it is true) for a nominal 

significance level of 5%. Below, we provide the details of the Monte Carlo 

simulation. 

 

We analyze 9 Data Generating Processes (DGPs), one for each of the columns in 

Table 21. In each DGP, the sample and covariates are the ones that we use to estimate 

the regressions in Table 2. The parameters of the DGP (coefficients multiplying the 

covariates, variance of the error term and intra-cluster correlation) are also the ones 

that we obtain when we estimate the regressions in Table 2. Hence, the results from 

the Monte Carlo simulation are indeed informative about our case. For each column 

of Table 2, we follow the steps below: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
1!Except!for!column!7!–!child!physical!growth!for!kids!aged!<!6!months.!We!were!unable!to!
conduct!the!Monte!Carlo!for!this!outcome!since!it!has!a!0!intraCcluster!correlation!once!covariates!
are!included.!



 

Step 1: Use OLS to estimate regression (5) in which the dependent 

variable, !Y!"#!,  and the sample are the ones indicated in the heading of the 

corresponding column in Table 2. The estimates, [!!,!!!!!,!!, !!], which are the 

same as those reported in Table 2, are saved and used in the steps below 

(except!!!,!which is discarded). Using the residuals from this OLS regression, we 

estimate the intra-cluster correlation and the variance of the error term [!!, !!!]. 

 

Step 2: Obtain 24 draws (our number of clusters) from a standardized normal 

distribution !! !!!
!"

.   

 

Step 3: Obtain N draws (number of observations) from a standardized normal 

distribution, !! , !!!
! . 

 

Step 4: Using the parameter values of step 1, and the random draw from step 2 

and 3, [!!, !!, !!!], we obtain simulated values for the dependent variable, !!"#, under 

the assumption that the treatment effect is null, that is, 

 !!"# = !!! + !0!T! + !X!"#!! + !Z!"!! + !! + !!!! + !!!!"#,  

where !!! = !!! + !!!! and !! = !!!
!!!!!!!!

.  

 

Step 5: We use OLS to estimate regression (5), 

 Y!"# = !α+ !β!T! + !X!"#β! + !Z!"β! + !! + !u!"#,  

using the simulated dependent variable calculated in step 4. We use three 

different methods for inference (cluster-correlated Huber-White standard errors, wild 



cluster bootstrap-t, randomization inference) to obtain three different P-values for the 

null hypothesis that β! is zero.  Under each method, we reject the null hypothesis at 

5% significance if its respective p-value is less than 0.05. 

 

 Step 7: Repeat steps 2-5 1000 times, keeping T!,X!"#, Z!" and the parameters 

from step 1 [!!,!!,!!, !! , !! , !!! ] fixed. Hence, the only differences across 

repetitions are the random draws from steps 2 and 3, and hence the simulated values 

of the dependent variable, which are used in step 5. 

 

For each method (cluster-correlated Huber-White standard errors, wild cluster 

bootstrap-t, randomization inference), the estimated test size, π, (reported in Table 9) 

is the number of repetitions where the null hypothesis is rejected over 1000, the 

number of simulations. A 95% confidence interval for the estimated test size can be 

computed using the formula ! ± 1.96 0.05×0.95/100, where 1.96 is the 97.5% 

standard normal critical value. In Table 9, we report whether the estimated test size is 

significantly different from the nominal one (0.05). !



!

!

!
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Appendix C: 
Outcome measures 

 
 
 



 
Appendix(C((

In this appendix, we detail the measures for each of our outcomes of interest.  

 

1 Child Consumption  

We collected information on child-specific intake of liquids and solid foods, focusing on diet 

variety. These are reported by the main respondent, who is the mother in the majority (92%) 

of cases. For children under the age of 2, there are three measures of liquid intake - whether 

or not (s)he had maternal milk, other milk, or water in the 3 days prior to the survey. In the 

second follow-up survey, there are also data on whether or not certain foods were consumed 

in the 3 days prior to the survey by all children aged less than 6 years. We use whether the 

children had  any porridge, nsima1, meat, fish, eggs or beans, and fruit or vegetables. 

 

2 Household Consumption 

We collected information at the household level on the quantities consumed and purchased of 

over 25 different food items in the week preceding the survey, and the amounts spent on 

them. Data were also collected on expenditures on items such as fuel and transport (over the 

past month), and clothing, health and education (all over the past year).2 In 2009-10, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Nsima is a thick paste made from maize flour and is a staple food in Malawi. Apart from being difficult to 

digest for infants, nsima does not contain all of the nutrients required by infants. MaiMwana recommends giving 

porridge to infants, ideally mixed with vegetables or protein, rather than nsima. 

2 The recall period for these items in the 2009-10 survey was modified to only record expenditures since the 

2008-09 survey. This was done so as to avoid double-counting of purchases, since the gap between the two 

surveys was less than a year (between 9 and 11 months). 



information was also collected on conversion factors from the most-frequented markets and 

trading centres, which are used to convert non-standard measurement units (such as a heap of 

tomatoes) into standard measurement units (such as kilograms). 

 

Food consumption aggregates are computed by summing up food expenditures and adding on 

the values of non-purchased food. To impute the latter, we first use conversion factors to 

convert quantities measured in non-standard units to standard units, and then use median unit 

values to impute their value.3 Total household monthly non-durable consumption is then 

computed as the sum of food consumption and the non-food expenditures outlined above (all 

converted to monthly terms). Finally, we obtain per-capita consumption values by dividing 

the relevant value by household size.  

 

3 Adult Labor Supply 

Labor supply is measured in three ways: whether or not an individual is engaged in an 

income-generating activity; whether or not an individual has a secondary income-generating 

activity; and the total number of hours worked in the week preceding the survey (number of 

days worked in the week preceding the survey multiplied by the number of hours worked per 

day; set to zero for those not working).  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 These conversion factors from the second follow-up were applied to data from both waves. Median unit values 

are computed by dividing expenditure on a certain good by the quantity purchased, and taking the median at the 

cluster level. In the small number of cases where there were insufficient observations within a cluster to reliably 

compute the median, it was taken at the district level instead. This method of imputation is similar to that used 

by Attanasio et al. (forthcoming). As a robustness check, we also valued consumption using the market prices 

rather than the median unit values. This is not our preferred method, since most households rarely purchase the 

foods they commonly consume from the markets. Reassuringly, though, both methods yield a food consumption 

share of total non-durable consumption of 0.86.!



 

4 Child Health 

Both physical growth and morbidity are used as indicators of child health. Physical growth is 

measured by height and weight. For height, we use the standardized height-for-age z-score. 

Unlike height, weight is non-monotonic because both having too high a weight and too low a  

weight is unhealthy and hence undesirable. Hence, we use whether the child has a healthy 

weight for his/her age, and whether he/she has a healthy weight for his/her height. Healthy 

weight for his/her age occurs when the weight-for-age z-score is within -2 standard 

deviations +2 standard deviations from the WHO norm. Healthy weight-for-height is defined 

in an analogous way. Child morbidity is maternal-reported and includes the prevalence of 

diarrhea, fast breathing, fever, chills, and vomiting in the 15 days prior to the survey.  

 

!
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Knowledge Questions 

 
 
 
 



Appendix(D:(Questions(on(Nutrition(Knowledge((

 

If an infant is being breastfed and suffers from diarrhoea, should the breastfeeding : 

 1 Continue as usual 

 2 Increase 

 3 Decrease 

 4 Stop and replace with another type of milk or liquid 

5 Don't Know 

 

Which of the following is most nutritious for infants between 6 months and 3 year ? 

 1 Biscuits 

 2 Groundnuts or soya 

 3 They both have the same nutritional value 

 4 Don't Know 

 

When should you start to give some solid foods to the baby? 

 1 From birth 

 2 After 1 month old 

 3 After 3 months old 

 4 After 6 months old 

 5 Don't Know 

 

 

 

 



 

If a woman is HIV positive, how should she feed her baby? 

1 Exclusive breast feeding for 6 months, followed by early cessation 

2 Exclusive breast feeding for 6 months, followed by complementary feeding 

3 Complementary feeding from birth 

4 Don’t know 

 

What is more nutritious for a child older than 6 months:  

 1 Nsima 

 2 Phala (porridge) 

 3 Both are the same 

 

Can you explain to me how best to cook fish with phala for a child older than 6 months 

(tick all those mentioned). 

1 Pound the fish  

2 Sieve the powder 

3 Add powder to flower/phala 

4 Use powder + flour to prepare phala 

5 None of the above 

6 Don’t Know 

 

Should eggs be given to an infant aged 9 months and above? 

1 Yes 

2 No 

3 Don’t know 



!
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Appendix E: 

Additional Tables 



APPENDIX E

Table E1: Outcome Measures for Each Domain
Domain Outcome Measures Constituting Index
Nutrition knowledge See exact questions in Appendix 3

Child Liquid Intake
Water intake in 3 days preceding survey; Intake of 

milk other than maternal in 3 days preceding 
survey

Child solid intake

Intake of any proteins in 3 days preceding survey; 
intake of any staples (nsima or porridge) in 3 days 

preceding survey; intake of any fruit and 
vegetables in 3 days preceding survey

Household Food Consumption Amounts (in kwacha) of cereals, proteins, fruit and 
vegetables and other foods

Adult Labor Supply Whether or not the individual works; whether or 
not the individual has 2 jobs; hours worked

Child Physical Growth
Height for age z-score; whether the child has a 

healthy weight for age z-score; whether the child 
has a healthy weight for height z-score

Child Morbidity
Whether or not the child did not suffer from 

diarrhoea; vomiting; fast breathing; fever; and 
chills in the 15 days preceding the survey

Adult Health

whether or not the adult can walk 5 kms easily; 
whether or not the individual can carry a 20 kg 
load easily; ability to carry out daily activities; 

whether or not the individual suffered from 
diarrhoea; fever; cough; chills; and vomiting in 30 

days preceding survey



Table E2: Index Components for Adult Female Labor Supply
[1] [2] [3] [4]

Summary 
Index Works

Has at 
least 2 
jobs

Weekly 
Hours 

Worked

Tz 0.018 -0.035 0.030 -1.740
Standard Error [0.165] [0.101] [0.025] [3.308]
Wild Cluster Bootstrap p-value {0.915} {0.795} {0.318} {0.657}
Randomization Inference p-value {0.903} {0.700} {0.273} {0.585}

Observations 4138 4449 4447 4138
R-squared 0.136 0.132 0.044 0.149
IntraCluster Correlation 0.14 0.214 0.0249 0.144
Mean, Control -0.05 0.861 0.108 24.54

Adult Females

Notes to Table: All regressions include controls for age, age-squared, cluster-level education and
Chewa ethnicity in 2004 and dummies for the month of interview. Standard errors computed using the
cluster-correlated Huber-White estimator are reported in brackets, with clustering at the level of the
the cluster (at which treatment was assigned; wild cluster bootstrap-t and randomisation inference p-
values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. Sample includes all females aged 15-65 years.
"Summary Index" contains the variables in columns 2-4 and is computed using the method described
in section 4.4. "Works" in an indicator of whether individual had an income-generating activity at the
time of the survey, "Has at least 2 jobs" is an indicator for whether individual has 2 income generating
activities, "Weekly Hours worked" give the total hours worked in the week prior to the survey on both
income generating activities.
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Table E6. Differences in characterisitcs between those that attrited and those who did not

Non-attrited

Difference 
Attrited - Not 

Attrited p-value
Woman's Characteristics in 2004
Married (dv = 1) 0.646 -0.112 0.004**
Some Primary Schooling or Higher 0.704 0.053 0.068+
Some Secondary Schooling or Higher 0.055 0.042 0.001**
Age (years) 25.169 -1.904 0.002**
Chewa 0.934 -0.021 0.118
Christian 0.982 -0.008 0.184
Farmer 0.661 -0.104 0.002**
Student 0.213 0.087 0.002**
Small Business/Rural Artisan 0.050 0.005 0.555
Age less than 16 in 2004 0.142 0.068 0.000**

Household Characteristics in 2004
Agricultural household 0.996 -0.010 0.088+
Main Flooring Material: Dirt, sand or dung 0.910 -0.046 0.001**
Main roofing Material: Natural Material 0.859 -0.044 0.062+
HH Members Work on Own Agricultural Land 0.925 -0.032 0.048+
Piped water 0.026 0.014 0.106
Traditional pit toilet (dv = 1) 0.818 -0.053 0.046*
# of hh members 5.837 -0.090 0.468
# of sleeping rooms 2.215 0.002 0.943
HH has electricity 0.004 0.002 0.651
HH has radio 0.646 -0.003 0.833
HH has bicycle 0.511 0.014 0.583
HH has motorcycle 0.006 0.006 0.210
HH has car 0.006 -0.002 0.330
HH has paraffin lamp 0.947 -0.016 0.044**
HH has oxcart 0.048 0.007 0.472
N 1594 902

Notes to Table: + indicates significant at the 10% level, * indicates significant at the 5% level. p-values reported here are
computed using the wild cluster bootstrap-t procedure as in Cameron et al. 2008, explained in section 4.1. Non-attrited refers
to women (and their households) actually interviewed in 2008-09 (and used in the analysis). Attrited refers to women (and
their households) drawn to be part of the sample in 2008-09, but who were not interviewed.


