
Ascheberg, Marius; Branger, Nicole; Kraft, Holger

Working Paper

When do jumps matter for portfolio optimization?

SAFE Working Paper, No. 16

Provided in Cooperation with:
Leibniz Institute for Financial Research SAFE

Suggested Citation: Ascheberg, Marius; Branger, Nicole; Kraft, Holger (2013) : When do jumps
matter for portfolio optimization?, SAFE Working Paper, No. 16, Goethe University Frankfurt, SAFE -
Sustainable Architecture for Finance in Europe, Frankfurt a. M.,
https://doi.org/10.2139/ssrn.2259630

This Version is available at:
https://hdl.handle.net/10419/88724

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.2139/ssrn.2259630%0A
https://hdl.handle.net/10419/88724
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Electronic copy available at: http://ssrn.com/abstract=2259630

 



Electronic copy available at: http://ssrn.com/abstract=2259630

When Do Jumps Matter for Portfolio Optimization?

Marius Ascheberga, Nicole Brangerb, Holger Kraftc,∗

a,cGoethe University Frankfurt, Faculty of Economics and Business Administration, Grueneb-

urgplatz 1, 60323 Frankfurt am Main, Germany.
bUniversity of Muenster, Finance Center Muenster, Universitaetsstrasse 14-16, 48143 Muen-

ster, Germany.

This version: April 29, 2013

Abstract

We consider the continuous-time portfolio optimization problem of an investor with con-

stant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset

follows a jump-diffusion model with a diffusion state variable. We propose an approximation

method that replaces the jumps by a diffusion and solve the resulting problem analytically.

Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth

equivalent loss that do not rely on results from the true model. We apply our method to a

calibrated affine model and find that relative wealth equivalent losses are below 1.16% if the

jump size is stochastic and below 1% if the jump size is constant and γ ≥ 5. We perform

robustness checks for various levels of risk-aversion, expected jump size, and jump intensity.

JEL-Classification: G11; C63

Keywords: Optimal investment, jumps, stochastic volatility, welfare loss

∗ Corresponding author. Tel.: +49 69 798 33700; fax: +49 69 798 33901.

E-mail addresses: Marius.Ascheberg@hof.uni-frankfurt.de (Marius Ascheberg),

Nicole.Branger@wiwi.uni-muenster.de (Nicole Branger),

holgerkraft@finance.uni-frankfurt.de (Holger Kraft).

1



When Do Jumps Matter for Portfolio Optimization?

This version: April 29, 2013

Abstract

We consider the continuous-time portfolio optimization problem of an investor with con-

stant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset

follows a jump-diffusion model with a diffusion state variable. We propose an approximation

method that replaces the jumps by a diffusion and solve the resulting problem analytically.

Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth

equivalent loss that do not rely on results from the true model. We apply our method to a

calibrated affine model and find that relative wealth equivalent losses are below 1.16% if the

jump size is stochastic and below 1% if the jump size is constant and γ ≥ 5. We perform

robustness checks for various levels of risk-aversion, expected jump size, and jump intensity.

JEL-Classification: G11; C63

Keywords: Optimal investment, jumps, stochastic volatility, welfare loss

1



1 Introduction

We consider the continuous-time portfolio optimization problem of an investor with constant

relative risk aversion who maximizes the expected utility of terminal wealth. The investor has

access to a risky and a risk-free asset.1 The risky asset follows a generalized jump-diffusion

process. We assume that the stock price is subject to jump risk, while the state variable

follows a diffusion process. In general, this problem cannot be solved analytically.

We propose an approach to find approximating solutions for the optimal portfolio strategies.

Our approximation is based on applying a Taylor approximation to the jump-related terms

in the Hamilton-Jacobi-Bellman (HJB) equation. This is equivalent to matching the first

two moments of the jumps by a diffusion and leads to an approximating portfolio problem

in which the risky asset follows a diffusion process. This problem can be solved using a

stochastic representation result. We refer to the resulting closed-form optimal strategies as

approximating strategies. The crucial question is how good the approximating solution per-

forms. To answer this question, we first give bounds for the difference between the (unknown)

true strategy and the approximating strategy. Second, we find bounds for the relative wealth

equivalent loss (RWEL), which is the proportion of wealth at time 0 that an investor using

the optimal strategy can sacrifice in order to have the same indirect utility as an investor

using the approximating strategy.

We apply our general results to an affine model with stochastic volatility and jumps in the

stock price. The stochastic volatility of the stock is modeled as in Heston (1993), and the

stock price is subject to jumps with a possibly stochastic jump size. Bates (1996) and Bates

(2000) study these types of model in the context of option pricing. The jump size is assumed

to be constant, beta-distributed, or log-normally distributed. The parameters are similar to

the ones in Pan (2002) and Liu, Longstaff, and Pan (2003), who calibrate the model to S&P

500 option data. We provide an explicit solution for the approximating problem and use the

1This problem has been introduced in Merton (1969) and Merton (1971).
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numerical procedure from Liu, Longstaff, and Pan (2003) to also solve the true problem. For

risk-aversion levels of γ > 7, we find that the bounds on the optimal strategies are less than

18% apart from each other. We apply the numerical method from Liu, Longstaff, and Pan

(2003) to calculate exact RWELs for a ten year horizon and find that our approximating

strategy performs well. For the base calibration, all RWELs are below 1.16% if jumps are

stochastic, and below 1% if the jump size is constant and γ ≥ 5. In line with intuition, an

increase in the expected jump size or in the jump intensity leads to larger RWELs. For realistic

combinations of jump risk and risk-aversion, however, the RWELs are below 2%. Finally, we

provide a second approximating strategy that implies RWELs of less than 5bps. This strategy

is, however, not fully explicit, since we must determine a constant that is implicitly given.

The remainder of the paper is organized as follows: Section 2 formulates a general model for

a market with jumps in the stock price, presents our approximation procedure and derives

bounds on the optimal strategy and on the RWEL resulting from this approximation. Section

3 considers an affine specification of the general model calibrated to S&P 500 data. It provides

a numerical solution to the true problem and a closed-form solution to the approximating

problem. Furthermore, we study the optimal and the approximating strategies in different

settings and report the respective RWELs. The settings include varying risk-aversions, jump

sizes, and jump intensities. Section 4 concludes. Proofs that do not follow their statement

can be found in the Appendix.

2 Model and Portfolio Optimization

We consider an economy where uncertainty is described by a complete filtered probability

space denoted by (Ω,P ,F , {Ft}t∈[0,T ∗]) with F = FT ∗ . The dynamics of the stock price S are

dS = S (µ dt+ σ dW − LdN) , (1)
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where W is a Browninan motion and N is a Cox process with intensity λ. The jump size

L can be stochastic. The drift µ, the volatility σ ≥ 0, and the jump intensity λ ≥ 0 are

functions of time t and a state variable Y . The dynamics of Y are given by

dY = α dt+ β (ρ dW +
√

1− ρ2 dW̃ ). (2)

Its drift α and volatility β ≥ 0 are also functions of t and Y . The correlation ρ is constant,

and W̃ is a Brownian motion independent of W . Unless stated otherwise, Y is the local

variance process of the stock, i.e. σ2 = Y .

In general, the portfolio problem for models with jumps cannot be solved explicitly. As

discussed later, this is due to additional terms in the HJB involving the portfolio strategy.

Our objective is to derive an analytical optimal strategy in a simplified market. This strategy

is then used as an approximating optimal strategy in the original market.

2.1 Portfolio Problem with Jumps

We consider an investor who maximizes expected utility from terminal wealth. He has con-

stant relative risk aversion equal to γ > 1. His investment opportunities comprise a money

market account with constant interest rate r and a stock with dynamics given by (1). Hence,

his wealth dynamics are given by

dX = X[(r + πχ)dt+ πσdW − πLdN ],

where π denotes the proportion of wealth invested in stock, and χ ≡ µ − r. The stock’s

expected excess return is given by χ̃ ≡ µ − L̄1λ − r = χ − L̄1λ, where L̄k denotes the k-th

moment of L. The investor’s indirect utility (value function) is J(t, x, y) = maxπ Et,x,y[u(XT )].
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It satisfies the Hamilton-Jacobi-Bellman equation (HJB):

0 = max
π

{
Jt + x(r + πχ)Jx + 0.5x2π2σ2Jxx + αJy + 0.5β2Jyy (3)

+ xπσβρJxy + λ
[
E[J(t, x(1− πL), y)]− J(t, x, y)

]}
,

where the expectation operator E[·] represents the expectation over the jump size L. Since

the marginal utility goes to infinity at zero wealth (Inada condition), the investor avoids

strategies with a positive probability of instantaneous total losses triggered by large jumps.

Admissible strategies must satisfy the condition

1− πL > 0. (4)

2.2 Approximating Portfolio Problem

To find an approximating solution to the portfolio problem, we use a second-order Taylor

expansion for the jump term in the HJB-equation (3):

J(t, x(1− πL), y) ≈ J(t, x, y)− Jx(t, x, y)xπL+ 0.5Jxx(t, x, y)(xπL)2. (5)

This implies E[J(t, x(1− πL), y)] ≈ J(t, x, y)− Jx(t, x, y)xπL̄1 + 0.5Jxx(t, x, y)(xπ)2L̄2. Sub-

stituting this approximation into the HJB equation (3) yields

0 = max
π

{
J̃t + x[r + π(χ− λL̄1︸ ︷︷ ︸

≡χ̃

)]J̃x + 0.5x2π2(σ2 + λL̄2︸ ︷︷ ︸
≡σ̃2

)J̃xx (6)

+ αJ̃y + 0.5β2J̃yy + xπσβρJ̃xy

}
.

We use J to denote the solution of the HJB equation (3), while J̃ denotes the solution of

the approximating HJB equation (6). Analogously, π∗ and π̃∗ denote the optimal strategies

corresponding to (3) and (6).
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The approximating HJB-equation (6) also results from a model in which the jump-diffusion

process for the stock price is replaced by a diffusion process with drift and volatility adjusted

in such a way that the expected change and the local variance match those from the original

process. For L = 0, the two equations are of course identical. The main point is that the

approximating portfolio problem can be solved in closed-form. For problem (6), on the other

hand, there is no closed-form solution available.

Now, the decisive question arises how good this approximation performs. How large is the

utility loss from following the approximating strategy π̃∗ instead of the truly optimal strategy

π∗? Furthermore, can we find an estimate for the approximation error solely by solving (6),

i.e. without knowing the actual indirect utility J and the actual optimal stock proportion π∗?

To address these points, we first solve the approximating problem (6). In the following, we

make the assumption that the jump intensity is proportional to the diffusive variance, i.e.

that there is a positive constant K such that

λ = Kσ2. (7)

This assumption is for instance satisfied in the Heston model with jumps if we set λ = KYt.

Proposition 2.1 (Stochastic Representation of Approximated Indirect Utility) If as-

sumption (7) is satisfied, the following results hold: (i) The indirect utility J̃ of the approxi-

mating model solves (6) and is given by

J̃(t, x, y) =
1

1− γ
x1−γ f̃(t, y)k with k =

γ(1 +KL̄2)

γ(1− ρ2 +KL̄2) + ρ2
= const, (8)

where f̃ has the stochastic representation

f̃(t, y) = Ẽ
t,y
[
e−

∫ T
t r̃u du

]
with − r̃ = 1−γ

k

(
r + 0.5 1

γ
χ̃2

σ̃2

)
. (9)

The expectation Ẽ[·] is calculated using the measure P̃ under which Y has the drift α̃ =
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α + 1−γ
γ

χ̃σβρ
σ̃2 .

(ii) If (χ̃/σ̃)2 as a function of Y is differentiable and increasing (decreasing), then f̃y is

negative (positive).

2.3 Bounds on Optimal Strategy

In the following, we derive bounds on the optimal strategy π∗. The investor’s indirect utility

function is given by J(t, x, y) = 1
1−γx

1−γg(t, y). The optimal strategy π∗ follows from the

first-order condition

γσ2π = χ+ σβρ
gy
g
− λE[L(1− πL)−γ]. (10)

To compare (10) with the first-order condition of the approximating HJB-equation (6), we

consider the first-order expansion (1− πL)−γ = 1 + γπL+R1(−πL), where2

R1(−πL) ≡ γ(1 + γ)

2

1

(1 + ξ)γ+2
(πL)2, ξ ∈< −πL, 0 >,

denotes the remainder term of the expansion. Therefore, the first-order condition (10) can be

rewritten as

γ(σ2 + λL̄2︸ ︷︷ ︸
=σ̃2

)π = χ− λL̄1︸ ︷︷ ︸
=χ̃

+σβρ
gy
g
− λE[LR1(−πL)].

We now make two assumptions to derive bounds on the optimal strategy. First, we assume

that the jump size distribution is positive

L ≥ 0, (11)

i.e. jumps only have a negative effect. Second, we only consider positive strategies, i.e.

π ≥ 0. (12)

2We define < a, b >≡ [min(a, b),max(a, b)].
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As we will show in Section 3, condition (12) is satisfied for realistic calibrations. Assumptions

(11) and (12) together imply that the presence of jumps can never increase the utility of the

investor. Furthermore, assumptions (4), (11), and (12) guarantee |πL| < 1, which ensures

that (1− πL)−γ has a well-defined binomial series expansion.

We first consider the case ρ = 0. The first-order condition becomes

π∗ =
χ̃

γσ̃2
− λE[LR1(−π∗L)]

γσ̃2
. (13)

The terms depending on g have vanished. With zero correlation between the stock price and

the state variable, the investor can no longer hedge changes in the investment opportunity set,

and the hedging demand is zero. By abstracting from hedge terms, we can perform a clean

analysis of the effect of jumps. As we will see later on, the general case is more involved. Given

the results of Larsen and Munk (2012), who study sub-optimal strategies with misspecified

hedge terms, this is not surprising. The following proposition gives bounds on the optimal

strategy π∗.

Proposition 2.2 (Bounds on Optimal Stock Demand (I)) If assumptions (4), (7), (11),

(12) hold and ρ = 0, then

π̃∗ ≥ π∗ ≥ χ̃

γσ̃2
− (1 + γ)λ

2σ̃2
(π̃∗)2C(π̃∗),

where C(π) = E
[

L3

(1−πL)γ+2

]
.

Proposition 2.2 uses the approximating strategy π̃∗ as an upper bound. The next proposition

shows that we can find tighter upper and also lower bounds using a quadratic inequality.

Proposition 2.3 (Bounds on Optimal Stock Demand (II)) If assumptions (4), (7), (11),

(12) hold and ρ = 0, then πu ≥ π∗ ≥ πl, where for j ∈ {u, l}

πj = − 1

2Aj
+

√
1

(2Aj)2
+

χ̃

γσ̃2Aj
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with Au = (1+γ)λ
2σ̃2 L̄3 and Al = (1+γ)λ

2σ̃2 E
[

L3

(1−πuL)γ+2

]
.

Next, we consider the general case ρ 6= 0. To derive bounds in this general case, we make the

additional assumption

ρgy ≥ 0, (14)

which is satisfied for realistic calibrations of the Heston model. Without this assumption, the

Merton-Breeden term in the first-order condition (10) is negative and in general unbounded

from below, which makes it very hard to derive bounds.

Proposition 2.4 (Bounds on Optimal Stock Demand (III)) If assumptions (4), (7),

(11), (12) and (14) hold, then the bounds for the optimal stock demand are

π ≥ π∗ ≥ π,

where π is the optimal strategy in an auxiliary model where we set L = 0, and π is the optimal

strategy in an auxiliary model where we set ρ = 0. The corresponding first-order conditions

are

γσ2π = χ− λE[L(1− πL)−γ], and (15)

γσ2π = χ+ σβρ
gnjy
gnj

, (16)

where gnj denotes the non-wealth dependent part of the investor’s indirect utility if the jump

size is set to zero (“no jumps”).

The following proposition can be used to check assumption (14). Here χy, (σ2)y, and πy

denote the partial derivatives of χ, σ2, and π with respect to y.

Proposition 2.5 (Sign of Hedge Term) Assuming (4), (7), and sufficient differentiabil-
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ity, the derivative gy is positive (negative) if

(1− γ)
[
πyχ+ πχy − γππyσ2 − 0.5γπ(σ2)y − λπyE[L(1− πL)−γ

]
+ λy

{
E[(1− πL)1−γ]− 1

}
(17)

is positive (negative). If π is deterministic, then (17) simplifies to

(1− γ)
[
πχy − 0.5π(σ2)y

]
+ λy

{
E[(1− πL)1−γ]− 1

}
.

2.4 Bounds on Relative Wealth Equivalent Loss

When the investor relies on the approximating strategy from solving (6), he suffers a utility

loss. We measure this utility loss by the RWEL, that is the percentage of initial wealth that

an investor using the optimal strategy can sacrifice and still have the same indirect utility as

an investor using the approximating strategy. The investor’s indirect utility in the original

and the approximating model for given strategies π and π̃ can be represented by

G(t, x, y; π) =
1

1− γ
x1−γg(t, y; π) and G̃(t, x, y; π̃) =

1

1− γ
x1−γ g̃(t, y; π̃),

The RWEL ` is defined by

G(t, x(1− `), y; π∗)︸ ︷︷ ︸
=J(t,x(1−`),y)

= G(t, x, y; π̃∗). (18)

Using the functional form of G, the loss can be calculated as ` = 1 −
(
g(t,y;π̃∗)
g(t,y;π∗)

) 1
1−γ

. To

determine the exact loss, we thus need to know the truly optimal strategy π∗ and the utility

G(t, x, π) in the original model. The challenge, however, is to find bounds for this loss that

only depend on the optimal strategy π̃∗ and the utility G̃ in the approximating model.

Theorem 2.6 (Approximation Error) Assume that (4) holds.

10



(i) The difference of the indirect utilities in the original and approximating model reads

G(t, x, y; π)− G̃(t, x, y; π̃) =
1

1− γ
x1−γD(t, y; π, π̃),

where D(t, y; π, π̃) = g(t, y)− g̃(t, y) =
∫ T
t

Ê
[
e−

∫ s
t r̂u duD̂s

]
ds with

D̂ =
{
λE[R2(−πL)]− (1− γ)∆π

[
χ− λL̄1 + σβρg̃y/g̃ − 0.5γ(2 + ∆)π(σ2 + λL̄2)

]}
g̃,

R2(−πL) =
γ(1− γ2)

6

1

(1 + ξ)γ+2
(−πL)3, ξ ∈< −πL, 0 >,

−r̂ = (1 − γ)(r + πχ − 0.5γπ2σ2) + λ
[
E[(1 − πL)1−γ] − 1

]
, and α̂ = α + (1 − γ)πσβρ. The

expectation Ê[·] is taken under a measure P̂ under which Y has the drift α̂ (instead of α).

The variable ∆ is defined by π̃ = π(1 + ∆).

(ii) If π̃ = π̃∗, then D̂ simplifies into

D̂ =
{
λE [R2(−πL)]− 0.5γ(1− γ) (π∆)2 (σ2 + λL̄2

)}
g̃. (19)

(iii) If assumption (7) holds and π̃ = π̃∗, then g̃ = f̃k where f̃ and k are given in (8).

Remarks. a) The representation of the utility difference D does not depend on the unknown

function g, but only on the function g̃ calculated in the approximating model.

b) The theorem is not restricted to the optimal strategies π∗ and π̃∗, but it holds for all

admissible strategies π and π̃. It thus provides a general tool to find an estimate for the error

the investor makes if he implements a misspecified strategy π̃ (instead of π∗). Of course, we

are ultimately interested in the case where π = π∗ and π̃ = π̃∗.

c) For parameterizations in which assumptions (11) and (12) hold, the remainder term R2 is

positive. Consequently, D̂ and thus D are positive if π̃ = π̃∗. This implies G ≤ G̃, i.e. the

solution to the approximating problem overestimates the investor’s indirect utility.
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We now apply Theorem 2.6 to two specific situations:3

g(π∗) = g̃(π̃∗) +D(t, y; π∗, π̃∗), and g(π̃∗) = g̃(π̃∗) +D(t, y; π̃∗, π̃∗)

D(t, y; π∗, π̃∗) gives the difference between the original model and the approximating model

when we use the respective optimal strategies π∗ and π̃∗ in both models. D(t, y; π̃∗, π̃∗) gives

the difference between the original model and the approximating model when we use the

approximating optimal strategy π̃∗ in both models.

Theorem 2.6 and the bounds on the optimal strategy π∗ from Subsection 2.3 allow us to find

bounds on these two functions. The bounds are denoted by

D ≤ D(t, y; π∗, π̃∗) ≤ D, and D̃ ≤ D(t, y; π̃∗, π̃∗) ≤ D̃.

This also gives bounds on g(π∗) and g(π̃∗):

D + g̃(π̃∗) ≤ g(π∗) ≤ D + g̃(π̃∗), and D̃ + g̃(π̃∗) ≤ g(π̃∗) ≤ D̃ + g̃(π̃∗)

From these, we get lower and upper bounds for the ratio of the two functions:

D̃ + g̃(π̃∗)

D + g̃(π̃∗)︸ ︷︷ ︸
≡B

≤ g(π̃∗)

g(π∗)
≤ D̃ + g̃(π̃∗)

D + g̃(π̃∗)︸ ︷︷ ︸
≡B

.

which then give upper and lower bounds on the RWEL: 1− (B)
1

1−γ ≤ ` ≤ 1− (B)
1

1−γ . Notice

that B and B depend on g̃(π̃∗) and on the bounds for D only. In particular, they can be

calculated without knowing the solution to the portfolio problem in the original model.

3We use the short-hand notation g(π) instead of g(t, y;π).
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3 An Affine Model

We now consider a specific (affine) parametrization of the model that is given by

χ(t, y) = χ̄y, σ(t, y) =
√
y, λ(t, y) = λ̄y, α(t, y) = θ − κy, β(t, y) = β̄

√
y. (20)

The state variable Y is the local diffusion variance of the stock. It follows the square-root

process from the model of Heston (1993). The stock price can jump, and with the jump

intensity being proportional to the state variable Y , assumption (7) is satisfied. This model

setup is widely used in the option pricing literature, including Bates (1996) and Bates (2000).

Liu, Longstaff, and Pan (2003) study the corresponding portfolio problem. They derive three

equations that implicitly define the optimal investment strategy and indirect utility function,

which have to be solved numerically. The following proposition summarizes their results.

Proposition 3.1 (Optimal Strategy in the Affine Model)

Assume that the original model is given by the affine specification (20). The optimal indirect

utility is given by

J(t, x, y) =
x1−γ

1− γ
eA(t)+B(t)y, (21)

where the following three equations implicitly define the optimal portfolio weight π∗t and the

functions B and A:

χ̄− γπ(t) + β̄ρB(t)− λ̄E
[
(1− π(t)L)−γL

]
= 0 (22){

Bt(t) +B(t)
[
(1− γ)β̄ρπ(t)− κ

]
+ λ̄E

[
(1− π(t)L)1−γ]

+
1

2
β̄2B(t)2 +

[
π(t)2γ(γ − 1)

2
+ π(t)(1− γ)χ̄− λ̄

]}
= 0 (23)

At(t) + (1− γ)r + θB(t) = 0 (24)

The boundary conditions are A(T ) = B(T ) = 0.
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These equations can be solved by applying a backward differencing scheme. Furthermore, if

we use a (not necessarily optimal) strategy π, equations (23) and (24) allow us to calculate the

associated expected utility. When the correlation between the stock price and its volatility is

zero, the optimal strategy and indirect utility become more explicit.

Proposition 3.2 (Uncorrelated Local Variance)

Assume that the original model is given by the affine specification (20) and that ρ = 0.

(i) The optimal investment policy is constant over time, independent of the local variance Y

and implicitly given by

γπ∗ = χ̄− λ̄E
[
L (1− π∗L)−γ

]
. (25)

(ii) The indirect utility for a given constant strategy π is4

G0 (t, x, y, π) =
1

1− γ
x1−γg0 (t, y, π) , with g0 (t, y, π) = e(1−γ)r(T−t)+A0(t,T )+B0(t,T )y, (26)

where

A0(t, T ) =
2θ

β̄2
ln

(
2ae

1
2

(a+κ)(T−t)

2a+ (a+ κ) (ea(T−t) − 1)

)
, B0(t, T ) =

2C0

(
ea(T−t) − 1

)
2a+ (a+ κ) (ea(T−t) − 1)

,

C0 = (1− γ)

(
πχ̄− 1

2
γ(π)2 +

λ̄

1− γ
{

E
[
(1− πL)1−γ]− 1

})
,

and a =
√
κ2 − 2β̄2C0. The indirect utility of the optimal strategy is thus J0 (t, x, y) =

G0 (t, x, y; π∗), with π∗ implicitly defined by (25).

(iii) The approximating strategy π̃∗ is also constant and independent of the local variance with

π̃∗ =
χ̃

γσ̃2
=

χ̄− λ̄L̄1

γ
(
1 + λ̄L̄2

) . (27)

4We use the subscript 0 to indicate the we assume ρ = 0.
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(iv) The RWEL is

R =

[
g0 (t, y; π∗)

g0 (t, y; π̃∗)

] 1
1−γ

− 1.

We now turn to the general case ρ 6= 0. In the approximating market, we have α̃ = θ − κ̃y

with κ̃ = κ + γ−1
γ

˜̄χσ̄β̄ρ
˜̄σ2 where ˜̄χ = χ̄ − λ̄L̄1 and ˜̄σ2 = σ̄2 + λ̄L̄2. We apply Proposition 2.1 to

obtain an explicit solution of the approximating problem.

Proposition 3.3 (Approximating Problem in the Affine Model)

For the affine model (20), it holds that

f̃(t, y) = e−Ã(t,T )−B̃(t,T )y.

The functions Ã and B̃ are

B̃(t, T ) = 2b
ea(T−t) − 1

ea(T−t)(κ̃+ a)− κ̃+ a
, and

Ã(t, T ) =
2θ

β̄2
ln

(
1− qe−a(T−t)

1− q

)
+

(
2θb

κ̃+ a
− 1− γ

k
r

)
(T − t),

where ˜̄η ≡ ˜̄χ/˜̄σ, a ≡
√
κ̃2 + 2bβ̄2, b ≡ 0.5γ−1

kγ
˜̄η2, q = (κ̃ − a)/(κ̃ + a), and the constant k is

given by

k =
1

1 + 1−γ
γ

ρ2

1+KL̄2

with K = λ̄/σ̄2.

Remark. Obviously, B̃ ≥ 0 and thus f̃y(t, y) = −B̃(t, T )f̃(t, y) ≤ 0. This also follow from

Proposition 2.1 (ii) since χ̃2

σ̃2 =
˜̄χ2

˜̄σ2 y is increasing in y.

3.1 Numerical Results

We use the following parameters that are similar to the ones in Liu, Longstaff, and Pan (2003):

χ̄ = 5.363, σ̄ = 1.0, r = 0.028, θ = 0.115, κ = 5.30, β̄ = 0.225, ρ = −0.57, λ̄ = 1.842. (28)
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Note that their estimates also include jumps in volatility. Jumps are assumed to be rare, but

severe events. The expected jump size is 25% and jumps arrive on average about every 25

years. The jump intensity is linear in the local variance such that the frequency of jumps

increases in volatile times. Empirical studies suggest that this is a feature observed in the

data (see, e.g. Pan (2002)). We consider three different jump size distributions L:

(i) A constant jump size L = 0.25. Assumption (4) implies π∗t < 4 for all t ∈ [0, T ].

(ii) A beta distributed jump size L ∼ KLB (αL, βL). We set αL = 18.5, βL = 55.5, and

KL = 1.0. This implies an expected stock jump size of E [L] = 0.25 and a standard deviation

of SD [L] = 0.05. The support of the jump size distribution is [0, KL]. Assumption (4) implies

π∗t <
1
KL

= 1 for all t ∈ [0, T ].

(iii) A shifted log-normal jump size L = 1− eµL+σLZ , where Z is a standard normal random

variable. We set µL = −0.2965 and σL = 0.1327, which imply E [L] = 0.25 and SD [L] = 0.10.

The support of the jump size distribution is (−∞, 1]. Assumption (4) implies 0 < π∗t < 1 for

all t ∈ [0, T ]. Note that this jump size distribution violates condition (11), which is needed

to calculate bounds on the optimal strategy.5 We still report the bounds even though the

condition is not satisfied and check whether they give sensible results also in this case.

3.2 Optimal Strategies and Bounds for Zero Correlation

We first consider the case ρ = 0. The optimal strategy and the approximating strategy follow

from Theorem 3.2. The bounds on the optimal strategy follow from Propositions 2.2 and 2.3.

Figure 1 illustrates the optimal investment strategy π∗, the approximating investment strategy

π̃∗ and the bounds on the optimal investment strategy for a constant jump size as a function

of relative risk aversion γ. In line with intuition, the optimal and the approximating portfolio

weight decrease in γ. This also holds true for the distance between the bounds and the

optimal strategy π∗ as well as for the distance between the approximating strategy π̃∗ and

the optimal strategy π∗. By construction, the bounds II are narrower than the bounds I. They

5The assumption L ≥ 0 can be relaxed, which is, however, beyond the scope of this paper.
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particularly improve on the lower bound for low levels of risk aversion, for which the lower

bound I is sometimes even negative. For risk-aversion levels of γ > 7, the difference between

the upper and lower bound II is below 10%. The difference between the approximating and

optimal strategy is below 5% for γ > 7.

Figure 2 depicts the corresponding results if the jump size is a beta-distributed. The upper

bound π < 1 which follows from condition (4) is now actually binding for low levels of risk

aversion. The lower and upper bounds are weaker than for a constant jump size. For γ > 7,

the upper and lower bounds II are less than 12% apart from each other. The approximating

and optimal strategies differ by less than 6% for γ > 7. Figure 3 depicts the same results for

log-normal jumps.6 For γ > 7, the upper and lower bounds II differ by less than 18%. The

approximating and optimal strategies are less than 8% apart for γ > 7. To summarize, both

the approximating strategy and the bounds are reasonable close to the optimal strategy.

3.3 Bounds for Negative Correlation

We now consider a model with ρ = −0.57 and analyze the bounds III implied by Proposition

2.4. We do not report the other bounds as they require ρ = 0. The upper bound does

not depend on the type of jumps and is thus identical for all three jump types. For risk-

aversion levels between 2 and 10 this upper bound is very large and is thus not reported.

Figure 4 depicts the lower bounds. We observe little differences between the lower bounds

for deterministic and stochastic jump sizes. The lower bounds for different stochastic jump

size distributions are also very close to each other. Assumption (4) is binding for low risk-

aversion levels (γ < 4). To summarize, we find that the bounds on the optimal strategy π∗

for ρ = −0.57 are not very tight.

6Notice that the results of Section 2.3 require L ≥ 0. This assumption can however be relaxed, which is
beyond the scope of this paper.
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3.4 Relative Wealth Equivalent Losses

We now examine how the approximating strategy performs compared to the true optimal

strategy. The comparison is done via the RWEL. This loss measure is independent of the

current level of wealth x, but depends on the local variance Y . In the following, we set the

local variance equal to its mean reversion level. Furthermore, we assume a time horizon of

T = 10 years.

For a correlation of ρ = 0, we can use Theorem 3.2 to calculate the RWEL explicitly. Figure

5 shows the RWEL for different assumptions about the jump size as a function of the relative

risk-aversion γ. For a constant jump size, the losses decrease monotonically in γ, and they

are below 1% if γ > 4. For beta-distributed and log-normally distributed jumps, the losses

are below 1% and 2%, respectively. In both cases, the upper bound from (4) is binding

for the optimal and approximating strategies for small values of γ. The optimal and the

approximating strategy then coincide, which of course brings the RWEL to zero. When

γ increases and the restrictions are not binding any more, RWELs first increase and then

decrease again.

To calculate RWELs for the case ρ = −0.57, we can use the numerical procedure of Proposition

3.1. Table 1 reports the RWELs for risk-aversion levels γ between 2 and 10. For low risk-

aversion levels, there are high losses only when the jump size is constant, while the losses are

zero for stochastic jump sizes. This is again due to condition (4) that implies an upper bound

on the admissible strategies if jump size is stochastic. This upper bound becomes binding if

the relative risk aversion is small. As a result, the RWELs are all below 1.16% if jumps are

stochastic. They are below 1% if the jump size is constant and γ ≥ 5.

Next, we study the dependence of RWELs on the expected stock jump size. In our model, the

expected excess return on the stock is
(
χ̄− E [L] λ̄

)
y. When we change the expected jump

size E[L], we offset its impact on the expected excess return by simultaneously changing χ̄.

For constant jumps we simply set the jump size equal to the new expected jump size. For
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beta-distributed jumps, we adjust the support of the jump size distribution.7 For log-normally

distributed jump sizes, we only change the expected jump size and leave the volatility fixed

at 10%.

Tables 2 reports the RWELs for different expected jump sizes ranging from 0.05 to 0.30

for a constant jump size, a beta-distributed jump size, and a log-normally distributed jump

size, respectively. In line with intuition, higher expected jump sizes result in higher RWELs

across all risk-aversion levels. If the expected jump size is below 15%, the RWELs are below

21bps (constant), 10bps (beta distribution), and 2bps (log-normal distribution). The highest

RWELs are obtained for an expected jump size of 30%: 14.38% (constant, γ = 2), 2.55%

(beta distribution, γ = 5), and 2.03% (log-normal distribution, γ = 5). To summarize, our

approximation performs well if the jump size is stochastic or if it is constant and below 20%.

Next, we study the dependence of RWELs on the jump intensity. As before, we fix the

expected excess return on the stock and use χ̄ to offset the change in the jump intensity

parameter λ̄.8 Table 3 reports the RWELs for different jump intensity parameters λ̄ ranging

from 0.1 to 4.0 (the benchmark value is λ̄ = 1.84156). Results for all three jump size specifi-

cations are reported. Larger jump intensities result in higher RWELs across all risk-aversion

levels. If γ ≥ 5, the RWELs are below 2% for all jump types and λ̄ ∈ [0.1, 4.0]. The highest

RWELs are 8.41% (constant, γ = 2.0, λ̄ = 4.0), 2.66% (beta distribution, γ = 4.0, λ̄ = 4.0),

and 1.83% (beta distribution, γ = 5.0, λ̄ = 4.0).

3.5 An Alternative Approximate Strategy

Our previous results suggest that our approximating strategy performs well in most cases.

Nevertheless, approximating the jump component by adjusting the diffusion components im-

7We set KL to be twice the expected stock jump size. Additionally, we linearly scale the volatility of
the stock jump size with respect to the maximal stock jump size KL according to Vol (L) = 0.01KL

0.5 . This
procedure avoids unrealistic or even non well-defined distributions. If the volatility would be left at 0.1 for an
expected jump size of 0.05 with a maximal jump size of 0.1, we cannot obtain a fit with a beta distribution.

8Note that the resulting jump intensity is λ̄Y . If Y is equal to its mean reversion level, the jump intensity
varies from 22bps to 8.69%.

19



plies that a typical risk characteristic of jumps is lost. In particular, we ignore the illiquidity

character of jumps, which is discussed in Liu, Longstaff, and Pan (2003).

We thus construct an alternative approximating strategy. For ρ = 0, we solve for the optimal

and approximating strategies π∗0 and π̃∗0 by using Theorem 3.2. Both strategies are constant

over time. They ignore the impact of correlation, but the difference between them accounts for

the characteristics of jumps. We now use this difference as a proxy for the missing component

in the approximating strategy. If π̃∗ is the approximating strategy for general ρ 6= 0, we define

the new approximating strategy by

π̃2 = π̃∗ + (π∗0 − π̃∗0) . (29)

The strategy in (29) requires only the approximating strategy π̃∗, the approximating strategy

π̃∗0 for ρ = 0, and the optimal strategy π∗0 for ρ = 0. The first two are known explicitly, the

last is constant over time and can be computed from (25).

We calculate RWELs using the numerical procedure of Proposition 3.1. As before, we run

robustness checks with respect to risk aversion, the expected jump size, and the jump intensity

for all three jump types. Overall, the adjusted strategies perform very well. For the same

parameters intervals as considered above, the largest RWEL is below 5 basis points. It is

obtained for a small risk aversion of γ = 2 and a large constant jump size of 30%.

4 Conclusion

We consider the continuous-time portfolio optimization problem of an investor with con-

stant relative risk aversion who maximizes expected utility of terminal wealth in a model in

which the risky asset follows a generalized (not necessarily affine) jump-diffusion model with a

stochastic state process. This problem cannot be solved analytically. We use a Taylor approx-

imation to obtain an approximating portfolio problem and provide an analytical stochastic
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representation of its solution. Furthermore, we derive bounds on the deviation between the

optimal and the approximating strategy and bounds on the RWELs. These bounds do not

depend on the solution of the portfolio planning problem in the original market and can thus

be calculated even when this solution is unknown.

Furthermore, we study a specific affine parametrization of the portfolio problem in which the

risky asset follows a Heston (1993) process with jumps. We provide an explicit solution to

the approximating problem and use the numerical procedure from Liu, Longstaff, and Pan

(2003) to solve the true problem. We find that the bounds on the optimal strategies are less

than 18% apart from each other for risk-aversion levels γ > 7 and for ρ = 0. For a non-zero

correlation, the upper bounds on the optimal strategy are larger. For the base calibration,

all RWELs are below 1.16% if jumps are stochastic and below 1% if the jump size is constant

and γ ≥ 5. If we increase the expected jump size or jump intensity, then the RWELs increase

as well. However, they are below 2% for realistic combinations of jump risk and risk aversion.

Finally, we propose a second approximating strategy that leads to very low RWELs of less

than 5bps.

References

Bates, David S., 1996, Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in

Deutsche Mark Options, Review of Financial Studies 9-1, 69–107.

Bates, David S., 2000, Post-’87 Crash Fears in the S&P 500 Futures Option Market, Journal

of Econometrics 94, 181–238.

Heston, Stevel L., 1993, A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options, Review of Financial Studies 6-2, 327–343.

Larsen, Linda S., and Claus Munk, 2012, The Costs of Suboptimal Dynamic Asset Alloca-

tion: General Results and Applications to Interest Rate Risk, Stock Volatility Risk, and

Growth/Value Tilts, Journal of Economic Dynamics and Control 36-2, 266–293.

21



Liu, Jun, Francis A. Longstaff, and Jun Pan, 2003, Dynamic Asset Allocation with Event

Risk, Journal of Finance 58, 231–260.

Merton, Robert C., 1969, Lifetime Portfolio Selection under Uncertainty: The Continuous-

Time Case, Review of Economics and Statistics 51-3, 247–257.

Merton, Robert C., 1971, Optimum Consumption and Portfolio Rules in a Continuous-Time

Model, Journal of Economic Theory 3, 373–413.

Pan, Jun, 2002, The Jump-risk Premia Implicit in Options: Evidence from an Integrated

Time-series Study, Journal of Financial Economics 63, 3–50.

Protter, 2005, Stochastic Integration and Differential Equations. Springer, second edition.

A Proofs

Proof of Proposition 2.1. (i) We conjecture J̃(t, x, y) = 1
1−γx

1−γ f̃(t, y)k, f̃(T, y) = 1 with

k chosen as in (8). Substituting into (6) yields the optimal stock demand π̃∗ = χ̃
γσ̃2 + kσβρ

γσ̃2

f̃y

f̃
,

where

0 = f̃t + 1−γ
k

(
r + 0.5 1

γ
χ̃2

σ̃2

)
︸ ︷︷ ︸

≡−r̃

f̃ +
(
α + 1−γ

γ
χ̃σβρ
σ̃2

)
︸ ︷︷ ︸

α̃

f̃y + 0.5β2f̃yy. (30)

Applying Feynman-Kac to (30) gives the representation (9) of f̃ .

(ii) We set R̃(t, Yt) ≡ r̃t. R̃y = ∂R̃/∂y denotes the partial derivative of the function R̃ with

respect to its second argument. Then f̃y(t, y) = Ẽ
t,y
[
e−

∫ T
t r̃u du

∫ T
t
−R̃y(u, Yu)Pu du

]
, where

Pu ≡ ∂
∂y
Yu denotes the derivative of the process Y with respect to its initial value Y (t) = y.

P satisfies the stochastic differential equation9 dPs = Ps[α̃y(s, Ys)dt+ βy(s, Ys)d
˜̃
W ], where

˜̃
W

is a P̃-Brownian motion. Since P ≥ 0, the sign of fy is negative if −R̃y = 1−γ
2kγ

∂(χ̃/σ̃)2

∂y
≤ 0 and

positive if −R̃y ≥ 0. Notice that, by assumption, γ > 1. Therefore, the claim follows. �

Proof of Proposition 2.2. Our assumption yields 0 ≤ πL ≤ 1 and thus ξ ∈ [−πL, 0] ⊂
9See Protter (2005), pp. 311ff.
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[−1, 0]. Then E [LR1(−π∗L)] = γ(1+γ)
2

(π∗)2E
[

L3

(1+ξ)γ+2

]
> 0 and the upper bound π∗ ≤ χ̃

γσ̃2 =

π̃∗ follows from (13). We also have 1 + ξ ≥ 1− πL > 0 and thus 1
1+ξ
≤ 1

1−πL . Consequently,

E [LR1(−πL)] =
γ(1 + γ)

2
π2E

[
L3

(1 + ξ)γ+2

]
≤ γ(1 + γ)

2
π2C(π) (31)

holds for any π ≥ 0 satisfying (4). Next, we use the upper bound π̃∗ = χ̃
γσ̃2 (adjusted to

satisfy (4) if needed) and obtain E [LR1(−π∗L)] ≤ γ(1+γ)
2

(π̃∗)2C(π̃∗). Substituting into (13)

yields π∗ ≥ χ̃
γσ̃2 − (1+γ)λ

2σ̃2 (π̃∗)2C(π̃∗), which is a lower bound. �

Proof of Proposition 2.3. First, we derive a sharper upper bound on π∗. The first-order

condition (13) is equivalent to

π∗ =
χ̃

γσ̃2
− λ(1 + γ)

2σ̃2
(π∗)2E

[
L3

(1 + ξ)γ+2

]
. (32)

From (4), (11), and (12), it follows that −1 < ξ ≤ 0. Therefore, 1
1+ξ
≥ 1 and thus

E
[

L3

(1+ξ)γ+2

]
≥ E [L3] = L̄3. Plugging this bound into (32) then gives π∗ ≤ χ̃

γσ̃2 − Au(π
∗)2

with Au > 0. The solution of this quadratic inequality yields a lower and an upper bound on

π∗. The lower bound is negative and is thus redundant due to (12). The upper bound

is given by πu. Next, we derive a non-trivial lower bound. From (31), we have that

π∗ ≥ χ̃
γσ̃2 − λ(1+γ)

2σ̃2 C(π∗)(π∗)2. Because C(π) is monotone, we use πu as upper bound in

C(π∗) to obtain the quadratic inequality π∗ ≥ χ̃
γσ̃2 − Al(π∗)2. The solution of this inequality

yields πl. The corresponding upper bound is redundant because it is below zero. �

Proof of Proposition 2.4. The first-order condition of the problem is stated in (10).

Without loss of generality, we can assume σ > 0 and β > 0. Then, (14) implies that the

Merton-Breeden term is positive. The myopic demand in (15) thus gives a lower bound for

π∗. Furthermore, jumps always decrease the stock price due to assumption (11). If we set

L = 0, the stock in this market is more attractive than the stock with jumps in the original

market. Hence, the strategy given in (16) is an upper bound on the optimal strategy π∗. �
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Proof of Proposition 2.5. The investor’s indirect utility for a given strategy π can be

represented by G(t, x, y; π) = 1
1−γx

1−γg(t, y; π), where, by Ito’s lemma, g satisfies

0 = gt + (1− γ)(r + πχ− 0.5γπ2σ2)g + [α + (1− γ)πσβρ]gy + 0.5β2gyy (33)

+λ
{

E[(1− πL)1−γ]− 1
}
g.

Notice that J(t, x, y) = G(t, x, y; π∗) for the optimal strategy π∗. Differentiating (33) with

respect to the state variable y gives

0 = gty + (1− γ)(πyχ+ πχy − γππyσ2 − 0.5γπ2(σ2)y)g + (1− γ)(r + πχ− 0.5γπ2σ2)gy

+[αy + (1− γ)(πyσβ + π(σβ)y)ρ]gy + [α + (1− γ)πσβρ]gyy + 0.5(β2)ygyy + 0.5β2gyyy

+λy

{
E[(1− πL)1−γ]− 1

}
g − λ(1− γ)πyE[L(1− πL)−γ]g + λ

{
E[(1− πL)1−γ]− 1

}
gy.

Sorting terms and denoting the coefficient of g by Ď shows that D is equal to (17). Applying

the Feynman-Kac theorem gives gy(t, y) =
∫ T
t

Ě
t,y

[e−
∫ s
t řu duĎsg(s, Ys)] ds, where −ř = (1 −

γ)(r + πχ − 0.5γπ2σ2) + [αy + (1 − γ)(πyσβ + πy(σβ)y)ρ] + λ
{

E[(1 − πL)1−γ] − 1
}

and the

expectation Ě[·] is taken under a measure under which Y has the drift α + (1 − γ)πσβρ +

0.5(β2)y. Since g > 0, the derivative gy is positive (negative) if Ď is positive (negative). �

Proof of Theorem 2.6. (i) The investor’s indirect utility in the original and the approximat-

ing economy for given strategies π and π̃ can be represented by G(t, x, y; π) = 1
1−γx

1−γg(t, y; π)

and G̃(t, x, y; π̃) = 1
1−γx

1−γ g̃(t, y; π̃), where, by Ito’s lemma, g and g̃ satisfy

0 = gt + (1− γ)(r + πχ− 0.5γπ2σ2)g + [α + (1− γ)πσβρ]gy + 0.5β2gyy (34)

+λ
{

E[(1− πL)1−γ]− 1
}
g,

0 = g̃t + (1− γ)(r + π̃χ− 0.5γπ̃2σ2)g̃ + [α + (1− γ)π̃σβρ]g̃y + 0.5β2g̃yy (35)

−λπ̃(1− γ)(L̄1 + 0.5γπ̃L̄2)g̃.
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Notice that J(t, x, y) = G(t, x, y; π∗) and J̃(t, x, y) = G̃(t, x, y; π̃∗) for the optimal strategies π∗

and π̃∗. We set D ≡ g− g̃ and define the process ∆ such that π̃ = π(1+∆). Furthermore, the

Taylor series of (1−Lπ)1−γ converges, since this is in fact a Binomial series and (4) holds. Its

second-order expansion reads (1−πL)1−γ = 1−(1−γ)πL−0.5γ(1−γ)π2L2 +R2(−πL), where

R2(−πL) ≡ γ(1−γ2)
6

1
(1+ξ)γ+2 (−πL)3, ξ ∈< −πL, 0 >, denotes the remainder term. Substracting

(35) from (34) and rearranging terms yields

0 = Dt − r̂D + α̂Dy + 0.5β2Dyy + D̂, (36)

where −r̂ ≡ (1− γ)(r + πχ− 0.5γπ2σ2) + λ
[
E[(1− πL)1−γ]− 1

]
, α̂ ≡ α + (1− γ)πσβρ, and

D̂ =
{
λE[R2(−πL)]− (1− γ)∆π

[
χ− λL̄1 + σβρg̃y/g̃ − 0.5γ(2 + ∆)π(σ2 + λL̄2)

]}
g̃.

(ii) follows because π̃∗ satisfies the first-order condition χ−λL̄1−γπ̃(σ2 +λL̄2)+σβρg̃y/g̃ = 0.

(iii) follows from Proposition 2.1. �

Proof of Theorem 3.1. The three equations (22), (23), (24) follow if we insert the affine

model (20) and the separation (21) into the HJB (3). (22) follows from the first-order condition

of this HJB. (23) and (24) follow from inserting (22) into the HJB and collecting terms that

involve the state variable and terms that do not involve the state variable. �

Proof of Theorem 3.2. (i) The first-order condition of (3) reads

γσ2π = χ+ σβρ
gy
g
− λE[L(1− πL)−γ]. (37)

Using (20) the local variance cancels and we obtain γπ = χ̄ + β̄ρgy
g
− λ̄E

[
L (1− πL)−γ

]
.

Equation (25) follows for ρ = 0.

(ii) Using the affine model (20) in (34) with ρ = 0 yields the following pde for g0(t, y, π):

0 = g0,t + (1− γ)rg0 + θg0,y − κyg0,y +
1

2
β̄2yg0,yy + C0yg0 (38)
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with C0 ≡ (1− γ)
(
πχ̄− 1

2
γπ2 + λ̄

1−γ

{
E
[
(1− πL)1−γ]− 1

})
. J0(t, x, y) = 1

1−γx
1−γg0(t, x, π)

is the indirect utility if we use the optimal strategy π = π∗, which is implicitly defined by (25).

To solve (38) we use the Feynman-Kac Theorem: g0(t, y) = e(1−γ)r(T−t)Et,y
[
eC0

∫ T
t Y (u)du

]
with

dYt = (θ − κYt) dt+ β̄
√
YtdW̃t. This representation has a closed-form solution. Equation (26)

is obtained analogous to the pricing of a bond in a model in which the short rate follows a

Cox-Ingersoll-Ross process.

(iii) follows from (20) and ρ = 0 in (37). (iv) follows from the definition of ` in (18). �

Figure 1: Investment strategies for the affine model (20) with constant jump size for
different risk-aversion parameters γ. The correlation parameter ρ is set to zero and thus the
optimal strategy and the bounds are constant over time. The solid line is the optimal strategy. The
dashed lines are the lower and upper bounds I (Proposition 2.2). The dotted lines are the bounds
II (Proposition 2.3). Note that the upper bound I is the approximating strategy.
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Figure 2: Investment strategies for the affine model (20) with beta-distributed jump
size for different risk-aversion parameters γ. The correlation parameter ρ is set to zero and
thus the optimal strategy and the bounds are constant over time. The solid line is the optimal
strategy. The dashed lines are the lower and upper bounds I (Proposition 2.2). The dotted lines are
the bounds II (Proposition 2.3). The investment cannot be higher than 1 due to (4). Note that the
upper bound I is the approximating strategy.

Figure 3: Investment strategies for the affine model (20) with log-normally distributed
jump size for different risk-aversion parameters γ. The correlation parameter ρ is set to zero
and thus the optimal strategy and the bounds are constant over time. The solid line is the optimal
strategy. The dashed lines are the lower and upper bounds I (Proposition 2.2). The dotted lines
are the bounds II (Proposition 2.3). The investment cannot be higher than 1 due to (4). The lower
dashed line has its smallest value of −0.7246 at γ = 4.325. Note that the upper bound I is the
approximating strategy.
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Figure 4: Lower bounds III on optimal investment π∗t implied by Proposition 2.4 for
the affine model (20) for different risk-aversion parameters γ. The remaining parameters
are from (28). The solid line is the lower bound for a deterministic jump size, the dashed line for
beta-distributed jump size and the dotted line for log-normally distributed jump size. The upper
bounds are large and thus omitted.

Figure 5: Relative wealth equivalent losses in the affine model (20) for different risk-
aversion parameters γ. The correlation is set to ρ = 0, the remaining parameters are from (28).
The solid line uses a deterministic jump size, the dashed line beta-distributed jump size and the
dotted line log-normally distributed jump size.
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Table 1: RWELs for various risk aversions γ and different jump specifications in the
affine model (20). This table reports the RWELs that an investor using the optimal strategy
would sacrifice in order to have the same indirect utility as an investor using the approximating
strategy. The indirect utilities of the optimal strategy and approximating strategy in the true
market are obtained using Proposition 3.1. Subsection 3.1 describes the three jump specifications.
The reported values are in percentages.

Risk Aversion RWEL
γ Constant Beta Log-normal

2.0 5.45 0.00 0.00
3.0 2.06 0.00 0.00
4.0 1.18 0.01 0.00
5.0 0.80 1.16 0.73
6.0 0.60 0.85 0.53
7.0 0.48 0.67 0.41
8.0 0.40 0.55 0.33
9.0 0.34 0.47 0.28
10.0 0.29 0.40 0.24
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Table 2: RWELs for different constant jump sizes L and risk aversions γ. This table
reports the RWELs that an investor using the optimal strategy would sacrifice in order to have the
same indirect utility as an investor using the approximating strategy. The indirect utilities of the
optimal strategy and approximating strategy in the true market are obtained using Proposition 3.1.
When we vary the constant (expected) jump size, we adjust the parameters such that the expected
excess return on stock remains the same as in the benchmark calibration (28). This procedure is
described in Subsection 3.4. The quoted values are in percentages.

Risk Aversion Constant Jump Size
γ 0.05 0.10 0.15 0.20 0.25 0.30

2.0 0.00 0.01 0.21 1.41 5.45 14.38
3.0 0.00 0.01 0.09 0.57 2.06 5.20
4.0 0.00 0.00 0.06 0.34 1.18 2.93
5.0 0.00 0.00 0.04 0.23 0.80 1.98
6.0 0.00 0.00 0.03 0.18 0.60 1.47
7.0 0.00 0.00 0.03 0.14 0.48 1.17
8.0 0.00 0.00 0.02 0.12 0.40 0.96
9.0 0.00 0.00 0.02 0.10 0.34 0.82
10.0 0.00 0.00 0.02 0.09 0.29 0.71

Risk Aversion Expected Stock Jump Size (Beta)
γ 0.05 0.10 0.15 0.20 0.25 0.30

2.0 0.00 0.00 0.00 0.00 0.00 0.00
3.0 0.00 0.00 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 0.01 1.14
5.0 0.00 0.01 0.10 0.40 1.16 2.55
6.0 0.00 0.01 0.07 0.30 0.85 1.88
7.0 0.00 0.01 0.06 0.23 0.67 1.48
8.0 0.00 0.01 0.05 0.19 0.55 1.21
9.0 0.00 0.01 0.04 0.16 0.47 1.02
10.0 0.00 0.01 0.04 0.14 0.40 0.88

Risk Aversion Expected Stock Jump Size (Log-normal)
γ 0.05 0.10 0.15 0.20 0.25 0.30

2.0 0.00 0.00 0.00 0.00 0.00 0.00
3.0 0.00 0.00 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 0.00 0.06
5.0 0.00 0.00 0.00 0.12 0.72 2.03
6.0 0.00 0.00 0.02 0.13 0.53 1.47
7.0 0.00 0.00 0.02 0.10 0.41 1.14
8.0 0.00 0.00 0.01 0.08 0.33 0.92
9.0 0.00 0.00 0.01 0.07 0.28 0.78
10.0 0.00 0.00 0.01 0.06 0.24 0.67
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Table 3: RWELs for different jump intensity parameters λ̄ and risk aversions γ. This
table reports the RWELs that an investor using the optimal strategy would sacrifice in order to have
the same indirect utility as an investor using the approximating strategy. The indirect utilities of the
optimal strategy and approximating strategy in the true market are obtained using Proposition 3.1.
When we vary the jump intensity parameter, we adjust the parameters such that the expected excess
return on stock remains the same as in the benchmark calibration (28). This procedure is described
in Subsection 3.4. For the constant jump size we use L = 0.25 = const. For the beta-distributed
and log-normally distributed jump sizes we use E(L) = 0.25 and Var(L) = 0.01. The quoted values
are in percentages.

Risk Aversion Jump Intensity Parameter λ̄ (Constant)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.0 0.08 1.20 2.97 4.55 5.82 6.80 7.53 8.05 8.41
3.0 0.02 0.36 1.01 1.66 2.23 2.71 3.10 3.40 3.63
4.0 0.01 0.19 0.55 0.94 1.29 1.59 1.83 2.03 2.19
5.0 0.01 0.13 0.37 0.63 0.88 1.09 1.27 1.42 1.53
6.0 0.00 0.09 0.27 0.47 0.66 0.82 0.96 1.08 1.17
7.0 0.00 0.07 0.22 0.37 0.53 0.66 0.77 0.86 0.94
8.0 0.00 0.06 0.18 0.31 0.43 0.55 0.64 0.72 0.78
9.0 0.00 0.05 0.15 0.26 0.37 0.47 0.55 0.61 0.67
10.0 0.00 0.04 0.13 0.23 0.32 0.41 0.48 0.54 0.58

Risk Aversion Jump Intensity Parameter λ̄ (Beta)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 0.05 0.37 0.95 1.73 2.66
5.0 0.00 0.20 0.56 0.93 1.26 1.53 1.74 1.91 2.04
6.0 0.01 0.14 0.41 0.68 0.93 1.14 1.31 1.44 1.54
7.0 0.01 0.11 0.32 0.53 0.73 0.90 1.04 1.15 1.23
8.0 0.00 0.09 0.26 0.44 0.60 0.74 0.86 0.95 1.02
9.0 0.00 0.07 0.22 0.37 0.51 0.63 0.73 0.81 0.87
10.0 0.00 0.06 0.19 0.32 0.44 0.55 0.63 0.70 0.76

Risk Aversion Jump Intensity Parameter λ̄ (Log-normal)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10
5.0 0.00 0.03 0.29 0.54 0.81 1.08 1.34 1.59 1.83
6.0 0.00 0.06 0.21 0.39 0.59 0.79 0.99 1.18 1.35
7.0 0.00 0.05 0.16 0.30 0.46 0.62 0.78 0.93 1.07
8.0 0.00 0.04 0.13 0.25 0.37 0.51 0.64 0.76 0.88
9.0 0.00 0.03 0.11 0.21 0.32 0.43 0.54 0.64 0.75
10.0 0.00 0.03 0.09 0.18 0.27 0.37 0.46 0.56 0.65
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