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Abstract:

In this article we evaluate the pricing performance of the rather simple but
revolutionary Black-Scholes model and one of the more complex techniques (neural
networks) on the European-style S&P Index call and put options over the period of
1.6.2006 till 8.6.2007. Our results on call options show that generally Black-Scholes
model performs better than simple generalized feed-forward networks. On the
other hand neural networks performance is improving as the option goes deep in
the money and as days to expiration increase, compared to the worsening
performance of the BS models. Neural networks seem to correct for the well-known
Black-Scholes model moneyness and maturity biases.
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Since the famous Black, Scholes, Merton formula substantial progress has been made in the
option pricing theory. The aim of this paper is to evaluate the difference between the rather
simple but revolutionary Black-Scholes model and one of the more complex techniques (neural
networks) on the European-style S&P Index call and put options over the period of 1.6.2004 till
8.6.2007. Our results on call options show that generally Black-Scholes model with historical
volatility performs better than simple generalized feed-forward networks. On the other hand
neural networks performance is improving as the option goes deep in the money and as days to
expiration increase, compared to the worsening performance of the BS model. Neural networks
seem to correct for the well-known Black-Scholes model moneyness and maturity biases. Both
models have much lower explanatory power for put options compared to calls. Since options are
real indicators of the market movements we assign this fact to the expectations of the market

participants about the market growth during the evaluated period.

Introduction

Options have been traded for centuries. The first option contract that resembles today option
contracts dates back to the seventeenth century (see e.g. Gibson (1991)). However the option
markets were not regulated and as such were often manipulated untill the estabilishment of the
first listed option exchange (Chcago Board Options Exchange; CBOE) in 1973. Since then the
option trading recorded unusual expansion in trading volume; variety of option contracts; and
geographical coverage. The development of option markets in 90°s is considered to be a “most

striking financial innovation™.

! Gibson,R. (1991): Option valuation. Analyzing and Pricing Standardized Option Contract, Georg Editeur, Geneva,
Switzerland, preface.



The increase in popularity of option trading gave rise to the immense volume of literature on the
option pricing theory — see Bates (2003) amongst others for comprehensive review and discussion
on option pricing techniques and their empirical testing. For great evidence on the more recent
contributions see e.g. Garcia, Ghysels and Renault (2004). The option pricing theory defines the
relations between the factors that influence the option price and the option price itself in order
to formalize the option pricing formulae or mechanism. The theory dates back to the very
beginning of the 20-th century, when the French mathematician Louis Bachelier (1990) deduced
an option pricing formula. It was based on the assumption that the stock price follows a Brownian
motion with zero drift. However, the greatest improvement was triggered by the work of Robert
C. Merton (1973) and F.Black and M.Scholes (1973) in 1970’s. The authors presented the first
complete equilibrium option pricing model under the assumption of risk-neutrality. Although
their formula violates the reality in number of ways (see the discussion later in the paper), it is
still the most well-known option pricing model. It is widely used in practice and constitutes the
fundamentals for many subsequent academic researches. Since Black, Scholes and Merton’s work
many extensions of the model and vast number of other pricing and hedging techniques have
been developed (again, see Bates (1995) or Garcia, Ghysels and Renault (2004) amongst others).
The theory of option pricing is useful not only in the risk management but in the theorethical

understanding of the financial markets.

The aim of this work is to test empirically the revolutionary Black-Scholes model and the modern
method of generalized feed-forward networks on the S&P 500 Index options during the period of
1.6.2004 to 8.6.2007. The use of the neural networks in finance modeling is growing in the last
decades (looking at the Czech literature, see e.g. Barunik (2008)). We aim to compare the pricing
performance of these methods with emphasis on the moneyness and days to expiration
structure of the options. We use the S&P 500 Index options covering the period from 1.6.2006 to
8.6.2007 for the out-of-sample performance. In the Black Scholes model we relax assumptions of
constant volatility and interest rate. We use the 3-month interest rate and the historical volatility
as the inputs for the model. Both inputs are used on purpose as they are likely to be available in
the daily trading situation. We compare the BS model to the simple generalized feed-forward
networks with one hidden layer and tanh transformation function. The spot price to strike price
ration and time to maturity enter the networks as inputs. We do not use volatility input on
purpose as we suppose the neural networks will be able to approximate_arbitraly well on their

own. Our first hypothesis is that the BS model will in general outperform the neural networks



since the S&P option index market is said to be the home-ground of the Black-Scholes model (see
e.g. Corrado, Su (1997)); and the BS model uses the inputs (historical volatility above all) that
reflect the real situation in the markets pretty well. On the other hand we believe that neural
networks will be able to correct for some well-known maturity and moneyness biases of the BS
model. We suppose that the BS model will have problem to price correctly the deep ITM or OTM
options with increasing days to expiration. We are further interested in the relative performance

of the models on the calls and puts.

1.1. Black, Scholes and Merton model

BS model is often set as a benchmark model for the empirical comparison in the option pricing
literature (see e.g. Dumas, Flemming, Whaley (1997), Bakshi, Cao, Chen (1997) or Amilon (2003)
amongst many others). We set the BS formula as the reference model as well. However we relax
the basic assumptions that are known to violate the real conditions in the financial markets -

the constant volatility and constant risk-free interest rate.

Robert Merton, Fischer Black ad Myron Scholes® derived the first simple closed-form solution for
pricing of the European-style call options on non-dividend paying stock. Their formula obtains
only five variables (the spot price of the underlying, the exercise price of the option, the risk-free
interest rate, the volatility and the time to maturity). The model belongs to the family of the
parametric continuous-time models with closed form solution. The stock price is assumed to
follow the geometric Brownian motion and it is based on the following assumptions: the stock

price follows Wiener process such that: dS=ndt+s Sdz.where i and & are constant (the change

7

f

in In5 is normally distributed with the mean { u — :—]I T and the variance 5T, e.i. the returns are

assumed to be log-normally distributed.); the short selling of securities with full use of proceeds is
permitted; there are no transaction costs or taxes; all securities are perfectly divisible; there are
no dividends during the life of the derivative and there are no riskless arbitrage opportunities;

security trading is continuous; the risk-free rate of interest ( ) is constant and the same for all

maturities.

% See Merton (1973) and Black and Scholes (1973).



Using Ito’s lemma; the no-arbitrage condition and the replicating portfolio authors derived

following partial differential equation:

2
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1t s 2 1s? (1.1.1)

The BS pricing formula is the solution of the BS PDE under the boundary conditions

f =max(0,5, — X) for call and f = max(X — 5,,0) for put when t = T and it is then defined as

follows:
¢ = SyN(d;) — Xe™*TN(d,) (1.1.2)
p = Xe *TN(—d,) — SgN(—d;) (1.1.3)
1n(38)+(r+< 1 1n(38)~(r+S |1 o . -
where d; = — o7 d, = B dy —oyT. N(x) is the cumulative probability

distribution function for a standardized normal distribution, ¢ and p are the European-style call

and put prices and other variables are familiar.

In our work we use the historical volatility as an input into the formulae (see e.g. Amilon (2003)).

We calculate the volatility from historical S&P Index returns returns such that:

R (1.1.4)

where n+ 1 is number of observations, I' is the natural logarithm of the stock return, T is the
length of interval in years. To ease the computational burden we set n to 21.lt would be more
accurate to set 11 equal to the days to maturity of each option. For 3 months risk free interest
rate proxy we use the average of the annualized 7 to 500 days continuously-compounded interest
rates for the options with the maturity less than 500; and 500 to 1000 days continuously-
compounded interest rates for the options with more than 500 days to expiration. We have to
point out that the BS model is based on the data are that likely to be available in a trading

situation and as such is believed to predict the option prices with sufficient accuracy.

Even though the BS model and its various extensions are widely used amongst practitioners, it is

generally assumed that the BS model lies on several highly questionable asumptions. Assets



returns are assumed to be log-normally distributed and the stock price follows continuous path
through time. In practice the evidence (see e.g. Bates (1998) ) shows that returns follow
leptokurtic distribution. Based on the empirical tests (see Macbeth and Merville (1979) or Dumas,
Flemming, Whaley (1996) amongst others) the cross-sectional properties of option prices indicate
another weakness of the model — the instantaneous volatility is not identical across the strike
prices (moneyness) and the maturities. There is abundant empirical evidence that the BS model
exhibits strong pricing biases across both moneyness and maturity — volatility smiles, skews or
smirks. Volatility smile is anomalous pattern that can be derived by calculating implied volatility
of the option across a range of strike prices. The smile is related to the degree to which the option
is ITM or OTM. Typically the steepness of the skew decreases with the increasing days to
expiration. It is generally agreed on that the volatility smile is the consequence of empirical
violations of the BS model assumptions of constant volatility and normality of log-prices. Such
evidence is clearly indicative of implicit stock return distributions that are negatively skewed with
higher kurtosis. The shape of the smile differs according to the underlying asset. For the
discussion on volatility smiles see Macbeth and Merville (1979), Rubinstein (1985), Dummas,

Flemming and Whaley (1996) or Corrado and Su (1997) amongst others.

Many generalizations and extensions of the BS pricing model have emerged since its publication;
attempting to correct for the imperfections. These are based on relaxing of the BS model’s most
stringent assumptions as described above. The group of the models includes the constant
elasticity of variance models, stochastic volatility models, GARCH models and jump diffusion
models amongst others. See e.g. Hull(2006), Merton(1975), Hull and White (1987), Heston (1993),
Heston and Nandi (2000) or Bakshi, Cao, Chen (1997) for further evidence.

1.2. Generalized feed-forward networks

Since most financial theoretical models remain in spite of their complexity misspecified, semi-
parametric methods seem to be promising tool for pricing and hedging of derivatives. Neural
network (NN) is data-driven, semi-parametric pricing method in which data is allowed to

determine both the dynamics of the price of the underlying asset and its relation to the price of



the derivatives. This method imposes minimal assumptions on the price dynamics of the
underlying asset as compared to the benchmark BS model. The option pricing formula is believed
to be embedded in the noisy market prices. NN is statistic model based on the data processing
units. Through processing information in currently available data NN make generalizations for the
future events. NN are recently becoming more and more popular with practitioners in financial

markets.

We will resort ourselves to the description and use of the multilayer perceptrons (MLP or feed-
forward) neural networks, which is most widely popular in finance (see e.g. Anders et al. (1998)).
Radial basis functions, projection pursuit regression, probabilistic and generalized regression
and others (see e.g. Hutchinson, Lo and Poggio (1994)) are the other common methods used for

derivatives pricing amongst others.

The neural networks structure is described as follows. The activation functions (neurons or the
transformation functions) are organized in layers. Input layer contains the inputs. Output layer
contain outputs. There can be a number of hidden layers between the input and the output layer.
Based on the number of hidden layers the network is single layer or multilayer. In the hidden
layers the input variables are transformed by a special activation function. However, finding the
number of hidden layers is more art of experiment than a science. One has to find the correct
number of hidden layers so that the function is well approximated and one refrains over-fitting.
The activation functions process inputs by forming linear combinations of the neurons and then
transform them through logsigmoid; tanh hyperbolic tangent; Gaussian or other transformation

functions. We use hyperbolic tangent activation function in this paper.
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The neural network is than described by the following equations:
Ykt =Yoot EE-:ITL:NL“ (1.2.1)
. gkt gkt
Nice = T(nyo) = o, (1.2.2)
.= wk.n+E§-=1wk_lX:r (1-2-3)

There are i* input variables and k* neurons; wy; is the weight (coefficient) vector. In the neural
network parlance, the variable ny; is transformed by the transformation function and becomes a
neuron Ny ; at time t. The set of neurons are then combined linearly with the coefficient vector

¥+ and form the final forecast of the output.

Given the network structure and the functional forms for the activation functions the unknown
parameters w are estimated through various techniques, called “learning algorithms”. The
weights (or coefficient) are adjusted during the process of the learning. There exist for example
stochastic gradient descent backpropagation, conjugate gradient or Levenberg-Marquardt
learning algorithms®. We use conjugate gradient learning algorithm in this paper (for more details

see e.g. P.D.McNelis (1995)).

According to Hutchinson,Lo and Poggio (1994) amongst others the main advantages of NN
approach over the traditional parametric models are as follows. NN models do not rely on
restrictive parametric assumptions like the lognormality of the underlying returns, the sample-

path continuity or the constant volatility. They are robust to the specification errors that are

? see for example P.D.McNelis (1995).



common for the parametric models. They are flexible to encompass a wide range of derivative
securities. They have good out-of-sampling and delta-hedging performance. On the other hand
the nonparametric pricing methods are highly (historical) data-intensive. These models are thus
not appropriate for newly-created derivatives (in case they have no similar counterparts among
existing securities or cannot be replicated by a combination of existing derivatives) or thinly-
traded derivatives. The “black-box” criticism of the neural network approach is often based on
the fact that using this approach researches let the data determine the relationships instead of
specifying how the inputs affect the prices and supporting the results with the theorethical
fundamental. Another problem is that since errors in fitting the option prices are likely to be
correlated across options and over time the statistical tests are difficult to formulate (see e.g.
Amilon (2003) or Hutchinson et al. (1994)). Gradojevic et al. (2007) further points out that NN may
feature the “recency effect” where parameters are unduly adopted in favor of the most recent
trading data. The crucial question with the NN technique is to specify the network correctly.
Some authors follow rather heuristic approach to build the architecture, however, Anders and
Korn (1999) amongst others provide the reader with the simple guide how to specify the network
architecture. Authors propose selection strategies that combine a top-down (irrelevant input

connections are removed) and bottom-up (the number of hidden units is determined) approach.

In order to identify the type of neural networks we should apply on our data we first performed
preliminary analysis. We further report only on the best performing neural network. The
preliminary analysis showed that Generalized feed-forward networks® (GFN hereafter) with 1
layer, tanh hyperbolic tangent transformation function and the conjugate gradient learning
algorithm fits the data best. Hutchinson, Lo and Poggio (1994), Amilon (2003), Anders, Korn,
Schmitt (1998) amongst others tested the same type of networks on the option data. It has been
showed (see e.g. Anders, Korn, Schmitt (1998)) that simple networks can approximate the

unknown functions arbitrary well.
Our option pricing formula is then defined (similarly as e.g. Gradojevic, Gencay, Kukolj (2007)) as:

G =0(5.X1) (1.2.4)

*MLPis a special case of GFN.



where C. is the price of the option, other inputs are familiar. T is the days to expiration. Assuming

the homogeneity of degree one of the option pricing formula we further sample the data in order
to capture the large differences in the values of the inputs and decrease the number of inputs’

and the complexity of the network, the function is than as follows:

2021 (1.2.5)

For the empirical comparison we need to split the data in order to train the neural networks.

1.3. Data description

In this paper we test the performance of the Black-Scholes and Merton option pricing model and
the generalized feed-forward networks with 1 layer and tanh transformation function. We test
the European-style S&P Index call and put options from the period from 1.6.2004 till 8.6.2007

with emphasis on the moneyness and days to expiration categories.

The S&P 500 Index is a capitalization-weighted index of 500 stocks from a broad range of
industries. The component stocks are weighted according to the total market value of their
outstanding shares. The S&P Index option6 market is one of the most liquid and active option
markets in the United States. Many financial economists have therefore used options on the S&P
500 Index for their empirical analysis (let us mention Bakshi, Cao, Chen (1997); Heston and Nandi
(2000), Dummas, Flemming and Whaley (1996) or Garcia and Gencay (1998) amongst many

others).

The data are obtained from the IvyDB Optionmetrics database. It consists of the daily close S&P
500 Index price adjusted for dividends, the date, the total contract volume and the call/put flag,
the option ID, the option expiration date, the daily best bid and best offer. The sample contains
491 819 unique option prices and 761 unique index prices in the period from 1.6.2004 till
8.6.2007. Following the empirical practice we use the midpoint of the bid-offer as the option

price. We further use the continuously-compounded interest rate from the IvyDB that is

> We as well did not include the interest rate in the network as it worsened its performance due to its complexity
® For more information about the S&P 500 Index option visit the CBOE webpage (www.cboe.com).



calculated from the continuously-compounded zero-coupon interest rates at various maturities.
The zero-coupon curve is derived from BBA LIBOR rates and settlement prices of CME Eurodollar

futures.
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The figure 1 shows the S&P Index returns (calculated as the difference of the natural logarithm of
the spot price between the days tand t —1). The figure 2 shows the histogram of the returns
covering the whole period. Compared to the normal distribution the returns are leptokurtics with
negative skewness; have higher peak and are skewed to the right — the sign of the frequent
occurrence of larger and more positive price movements. The yearly subsamples showed similar

shape.
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We follow the work of Bakshi, Cao, Chen (1997)" to apply the exclusion filters on the dataset.
First, options with less than six days to expiration are excluded in order to prevent the liquidity-
related biases. Second, price quotes lower than 0,375 $ are excluded in order to mitigate the
impact of price discreteness on option valuation. Third, the quotes that do not satisfy the no-
arbitrage condition: C = max (0,S, — X,) for calls and P = max (0,X,_8§,) for puts are taken
out of the sample. As we have the index close price adjusted for dividends, we do not need to
adjust the S&P 500 spot price series for dividends. The next table shows the number and type of
excluded quotations; almost 30 % of the data were excluded. The biggest impact has had the
quotes-related filter (11.84%). The final dataset consist of 57.56% calls and 44.44% puts. In
relative terms puts do not meet the no-arbitrage condition and quote filter more often than calls.

Generally options that do not satisfy the no-arbitrage condition are mostly ITM.

7 . . L
Their work is followed by many subsequent researches and their criterions are reasonable.
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Original dataset

Exclusion filters
TM<6

quote <0.375

no arbitrage

Modified dataset

Calls
Puts

Total

Calls
Put

subtotal

Calls
Puts

subtotal

Calls
deep ITM calls
Puts
deep ITM puts

subtotal

Total

Calls
Puts

Total

In units

245783
246036

491819

11261
11206
22467

18402
39814
58216

12446
12186
44829
34861
57275

137958

203674
150187

353861

% within each
category

49.97%
50.03%

100.00%

50.12%
49.88%
100.00%

31.61%
68.39%
100.00%

21.73%
21.28%
78.27%
60.87%
100.00%

57.56%
44.44%

100.00%

% of excluded
dataset

8.16%
8.12%
16.29%

13.34%
28.86%
42.20%

9.02%
8.83%
32.49%
25.27%
41.52%

100.00%

% of the original
dataset

4.58%
4.55%
4.57%

7.49%
16.18%
11.84%

5.06%
4.96%
18.22%
14.17%
11.65%

28.05%

82.87%
61.04%
71.95%

We further divide the dataset into the categories according to the moneyness and the time to

maturity. We again follow the work of Bakshi, Cao, Chen (1997) and define the moneyness and

time to maturity as follows; the call (put) is said to be ITM (OTM) if the spot price of the

underlying to strike price ratio E_' 1.03; ATM if the ratio € (0.97,1.03) and OTM (ITM) if

5

< 0.97. The short — term maturity option expires in less than 60 days; long-term in more than

12



180 days and mid-term has more than or equal to 60 and less than 180 days to expiration. The

following table shows the sample properties of the options.

Calls Puts
Moneyness, S/X Days to expiration Days to expiration
< &0 (60,180 =180 Subtotol < &0 (60,180 =180 Subtotol
< 0.94 deep $0.96 $3.69 §23.57 deepM  $140.01 $120.54  $123.52
o™

753 4937 21467 27157 1497 1462 3887 6846

(0.94.0.97] OTM §2.52 $11.30 $61.21 IT™ $53.72 $59.97 $83.35
5750 4615 4936 15301 2639 2714 4751 10104

(0.97,1.00] ATM $9.51 $26.05 $86.70 ATM $25.48 $36.89 $67.05
9767 5608 5504 20879 8875 5583 5500 19958

11.00,1.03] AT™M $30.70 $48.93  $110.56 ATM $9.78 $22.49 $53.92
9330 4963 5543 19836 9334 4963 5536 19833

(1.03,1.06] IT™M $61.71 $78.33  $133.20 OoT™ $4.35 $14.91 $43.13
7942 3980 5105 17027 7711 3980 5105 16796

=1.086 deepl™ $221.67 §272.46  $333.07 deep $1.86 $4.82 $14.99

o™

31386 25272 46816 103474 13560 17929 45161 76650
Subtotol 64928 49375 89371 203674  Subtotol 43616 36631 69940 150187

The summary statistics is obtained for the daily average bid-ask mid-point option price. Note
that the price of the option is increasing with the deepness of the option being in the money (as
there is higher chance for the spot to move in desirable direction) and increasing days to the
expiration (as its time value increases). The price of call goes from 0.96 $ for short-term deep
OTM call to 333.07S for long-term deep ITM call. Put has narrower boundaries; it goes from 1.86$
to 1405.

To get a sense of the frequently discussed moneyness and time to maturity biases the following
table shows the BS implied volatility within each category of the S&P Index options sample. We
use the implied volatility obtained from the Ivy DB as it uses the standard procedure for
calculating the implied volatility; the theoretical BS price is set equal to the averaged best bid-

offer mid-point option price and the formula is inverted using the numerical search technique.

13



Moneyness, S/X

< 0.94
(0.94,0.97]
(0.97,1.00)
(1.00,1.03)
(1.03,1.06)
=1.06

deepOTM
OTM
ATM
ATM
™

deeplM

< &0

Calls

Days to expiration

(60,180)

11,041%
10,274%
10,974%
13,002%
15,956%
37,606%

=180
10,905% 12,035%
11,138% 13,516%
12,100% 14,343%
13,396% 14,931%
14,976% 15,633%
23,894% 19,129%

deepMM
IT™M
ATM
ATM
o™

deepOTM

< 60

29,437%
14,242%
11,298%
12,942%
15,527%
20,181%

Puts

Days to expiration

(60,180]

14,980%
12,351%
12,169%
13,446%
15,038%
20,304%

=180

14,340%
13,891%
14,622%
15,217%
15,924%
20,076%

The equally weighted averaged implied volatility is calculated for each subsample with regard to

moneyness and days to expiration. The results confirms the well-known BS bias — regardless the

term to expiration the implied volatility exhibits U-shaped pattern across the moneyness as the

option goes from deep OTM to deep ITM. Calls exhibits rather “sneer-like” pattern, while puts

follow the traditional smile. These findings indicate the most severe BS misspricing for the deep

ITM option. However the maturity-related bias is not so clear, probably because the long-term

option category contains rather nonhomogenous option sample from 180 to more than 500 days

to expiration. The following simple graphs display the patterns. The subsample yearly periods

showed similar patterns.
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The period from the 1.6.2004 to 1.6.2006 is used for training of the neural networks. The period

from 1.6.2006 to 8.6.2007 is used for the model comparison. We have 57 702 unique put prices

and 83 716 call prices with 6 to 1094 days to expiration and 141 strike prices ranging from 500 to

2000 in 257 trading days. When we look at the days to expiration, the most frequently occurred

are short-term options with mode equal to 30. When we look at the moneyness, the trading

activity occurs most for around ATM options and the distribution is leptokurtic with positive

skewness (long right tail). The graph covers puts as calls have very similar characteristics.

Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Minimum

Maximum

Calls

1,143834

0,000874

1,073549

0,990836

0,252947

0,063982

5,818722

2,088777

0,644047

2,90004

Puts

1,127632

0,000784

1,069571

0,990836

0,188291

0,035453

8,597069

2,533901

0,782688

2,5653
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Figure 5 — Moneyness histogram for puts
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1.4. Performance evaluation

For the interpretation of the individual model we use the commonly used statistical criteria as

described in the table. They are based on the comparison of the model errors - the difference

between the actual values of the predicted variable and their estimates.

Table 5 — Criteria for the models comparison

N is the number of observation, 1

number of model parameters and ¥

v¢is the estimated variable, 3
is the average of the estimated variable..

: is the estimate of the variable, w is the

Mean squared error (MSE)

1w .
EZ(J’r _J-’::'
=1

R - squared

TSGR
Elpr:i(}’f = }T]:

Root Mean Square Error (RMSE)

N

1 ;
EZ(}': = 5%)F
=1

Schwartz Information Criterion (SIC)

1oy - w
log [;ELL‘:}} - J"r}zl +;IUQ(N},

Mean Absolute Percentage Error (MAPE)
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To assess the out-of-sample performance of the two non-nested models we use the Diebold-
Mariano (DM) test®. It tells us how we should determine that the out-of-sample fit of one model
is significantly better than the other. The statistics tests for the null hypothesis of equal
predictive ability against the alternative of the non equal predictive ability for the two

nonnested models.

The statistics is as follows:

DM, = — = "N(0,1) (1.3.1)
_'EEI;: T_ay s }}H )
NF 23
where, {Eé_h ,}::1 and {-E';'._m}‘_l are  h-step ahead prediction errors;

d:=L(£;_h|r}—L(E;‘_hl:.), lL%] is the lag window, S5(T) is the truncation lag,

-
|

plz) = %EL :|+1{d: — d)(d._j;y— d) and L{.Ei_hh) is the positive loss function.

1.5. The empirical results

Let us denote the Generalized feed-forward neural networks as NN(1); and the Black Scholes

model BS(HIS).

Let as first look at the Diebold-Mariano test. Since the p-values are very small, we reject the null
hypothesis of equal predictive accuracy of the neural networks and BS models. As the statistics
for calls are positive for all quadrants we can say that the overall predictive ability of BS model is
better than for the neural network model. This confirms our first hypothesis stated in the
introduction that BS will outperform the neural networks since the S&P Index option market is
based on the BS valuation. However as the test statistics are below the critical value of -1.69 at
the 5 % critical level for the BS(HIS) model for puts. For the puts NN(1) produces predictive errors

that are significantly lower than those of BS(HIS) model.

® For more details see for example McNelis (2005), pg.97.
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NN(1) Calls Puts

BS(HIS) BS(HIS)
DM(0) 331.80 (0.000) -7.12 (0.000)
DM(1) 321.30 (0.000) -6.78 (0.000)
DM(2) 313.30 (0.000) -6.47 (0.000)
DM(3) 304.21 (0.000) -6.23 (0.000)
DM(4) 298.33 (0.000) -6.00 (0.000)

The table 7 shows the overall out-of-sample performance of our models for the whole testing
dataset using the common statistical measures. For calls the models fit the data very well
according to R-squared statistics (as R> approaches one). However, BS model has better results in
almost all categories, having lower Schwarz Information Criterion and root-mean square error.

With mean absolute percentage error neural networks outperform BS model.

Call options Put options
Average MAPE RMSE SIC R® Average MAPE RMSE SIC R
NN(1) $192.39 191.39 $40.10 7.38 96.79% $26.20 232.68 $14.45 5.34 65.43%
BS(HIS) $190.52 22351 $14.60 5.36 99.35% $10.13 73.02 $18.78 5.87 41.58%
Sample $185.22 $21.64

2

More interesting is the put options performance. This time BS(HIS) fails to fit the data at all (R* =
41.58%) and neural networks outperform the BS(HIS). Compared to call prices, the put options
have much worse results. We assign this feature to the fact, that during the testing period
market participants have been very positive about the growth of the financial markets. We
again must to point out, that very good performance of the BS model is due to the used inputs of

volatility and interest rate.

When we have a closer look at the results within the categories we get more detailed picture
about the performance of the models. The table 8 shows the statistics for the call options. The
overall performance of both models with regard to the R* has quite high explanatory power with
all values being higher than 95 % . The performance of neural network model is improving as the
days to the expiration increase and as option goes ITM; compared to the worsening

performance of the BS model. Short-term and mid-term options are priced best with BS model
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in all moneyness categories with regard to all criteria. The result is quite natural as the historical
volatility is monthly volatility and matches the short term options quite well. For mid-term option
the BS model still outperforms the neural network model even though BS model performance is
worsening (see Figure 6). For long-term options evidence is rather mixed, depending on the
criterion. Neural networks have better SIC and R’ criteria as option goes from ATM to deep ITM
compared to BS model. When we look in more details on ME, NN(1) fits the data best compared
BS model in the ATM and deep ITM category respectively. We have to point out again that the
relatively good performance of the BS models is caused by the accuracy of volatility and
interest rate inputs that reflect the real condition in the markets and by the fact that S&P

options market is said to be the home-ground of BS.

BS(HIS) over prices the option when it is deep OTM, OTM and deep ITM, other options are

underpriced. On the other hand, NN overprice all options except for deep ITM.

Within the put options we can see different patterns (see the table 9). The best performing
model based on the goodness of fit statistics, ME, RMSE and SIC criterions is always NN(1).
BS(HIS) model seems to fail to predict the option prices correctly. Regardless the days to
expiration BS model under-price the options while NN over prices the options (see Figure 8).
Both models show pretty small goodness of fit statistics (lower than 75 %). As stated earlier, the
worse put results compared to call outcomes may be the result of the expectations of the market

participants about the growth of the financial markets.

19



NN(1)
BS(HIS)
NN(1)
BS(HIS)
NN(1)
BS(HIS)
NN(1)
BS(HIS)
NN(1)
BS(HIS)

ME
ME
RMSE
RMSE
SC
SC
Rsar
Rsar

S09%6
$4522
$262
$4426
$165
$44.66
2%
764
228
9.13%
9997%

4.98%
99.8%

$2917
$62.75
$3125

$208
$3538
$1673
713
564
9%5.02%
988%%

8263
$5837
413

85574
$149

$385
806
271
A13%
999%6%

$1198
$6226
$1287

$5028
4089
$5071
$6.86
7%
387
9145%
99.84%

$7015
$9950
$6920

$2935

3095
3104

$1806
688
581
9340%
97.77%

AT™M

$1054
7232
$1046
56178
S008

$29%
826
286
8737%
9%

$2943
s7741
82771

SA79
S172
4875
173
778
411
9026%
9.75%

59898
$11952
$97.80

$2054

S118
$2311

$1705
629
569
4.06%
96.77%

AT™M

$3426
8783
$3267
5357
$160

$390
79
273
87.19%
9993%

S5461
$9306
$5125

$3846
$335
$3935
$720
735
397
91.01%
99.70%

$12602
$13308
$12529

$1207

073
$1516

S1491
544
564
9538%
9553%

$8552
$11034
58292

52482

$260
$2599

AN
652
321
9333%
9.76%

$15147
$15350
$15303
$203
$156
$802
$1161
417
492
97.27%
94.28%

DeepMM

$22699
$209.06
$22841

$1793

5142
$3504

8224
711
162
93.88%
997%

95.7%
9991%

S37661
$35753
$39748
$1909

52087

$2652
741
656
9754%
9895%
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NN(1)
BS(HIS)
NN(1)
BS(HIS)
NN(1)
BS(HIS)
NN(1)
BS(HIS)
NN(1)
BS(HIS)

ME
ME
RIVISE
RIVISE
SIC
SIC
Rsar
Rsar

Deep MVI

$2317
$2485
S1371
S167
$947
s1191
S1244
500
515
7343%
7104%

$2263
52697
S$1120

S1143
$1199
$1547
498

550

66.66%
44.48%

$2149
$2551
$1034

$1115
s1191
$1546
4%

548

6845%
46.7%

m

1

$2301
$27.70
S1121
$469
S$1180
S1155
$1557
490
551
7343%
4143%

$2201
$26.14
S1161

$1040
S1184
$1428
495

534

67.84%
53.23%

52164
$2529
$1042

S1122
S1139
$1398
487

529

6699%
5031%

AT™M

$2249
$2736
$1058

s1191
s
S1244
504

555

65.72%
43.22%

$2116
$2613
$1035
5497
$1081
S1181
$1508
494
544
61.96%
3800%

$2228
$2657
$1063

$1165
$1143
$1471
488

539

6822%
4738%

ATM

$2146
$2542
$995

S1151
S1221
51584
501

554

6791%
4607%

$2110
$2481
$1025
371
$1085
s21
$1576
501
553
6933%
4892%

$2229
$2689
$1035

S1194
S11.72
$1571
493

548

6697%
40.70%

o™

1

$2140
$2597
$99
457
S1142
$1186
$1564
495
551
63.8%%
37.28%

$2178
52688
$1078

S$1100
S1213
$1525
500

547

65.80%
4595%

$2069
$2504
$1008

$1061
$1139
$1378
487

5.26

6336%
4642%

DeepOTM

1 2
$2140  $2148
$2618  $2641
4  $1026
478 SAA
$1198  $1122
$1220  $1244
$1602  $1590
500 504
555 554
6341% 6365%
3695% 405%

$2169
$2632
$993

S1176
S1175
$1565
493

550

65.16%
3820%
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Figure 6 — The actual and models predicted prices for the deep in-the-money call option

The graph shows the actual and models predicted prices for the deep ITM (with moneyness around 1,6) call option. As
the days go from 60 (mid-term option) to 193 (long term option) the predictive capability of the neural networks is
improving while the BS model performance is worsening.
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Figure 7 - The actual and models predicted prices for the deep ITM short-term call option

The graph shows the actual and models predicted prices for the deep ITM (with moneyness around 1,74) and
short-term (9 to 40 days to expiration) call option. BS model predicts the actual prices very well, while neural
networks over-price the option.
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The above mentioned results confirm the conclusions derived by Corrado and Su (1997) amongst
others about the existence of moneyness and maturity biases of the BS model. BS models
performance is worsening as time to maturity increases and the moneyness deepens compared
to the improving NN performance on call options. To correct for the weaknesses of the networks
and to improve their overall performance we should use better volatility estimate as input; for
example GARCH model as proposed amongst other by Ritchken and Trevor (1999) or to simple
use the BS implied volatility per each day and moneyness caregory from the previous day.
Moreover we can use more complex Levenberg-Marquart learning algorithm or train networks

separately in each category.

There are many other challenges for the future work. We can compare the performance of the
more challenging GARCH or stochastic volatility models or work on the better neural networks
identification. We have omitted the hedging analysis in this work as hedging and pricing
performance may differ substantially in the model comparison. Since the American-style
derivatives are more frequently traded than European-style derivatives one should compare the

performance of the neural networks and techniques for pricing the American-style options.
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1.6. Conclusion

Since famous Black-Scholes option pricing formula immense volume of literature on the option
pricing was issued. Soon after the model was proposed it was realized that it lies on the highly
unrealistic assumptions like the lognormality of the asset returns and constant volatility or
interest rate. It therefore exhibits strong pricing biases. It moreover cannot price more complex

contingent claims (e.g. American-style derivatives).

The paper is devoted to the empirical comparison of the complex neural networks and simple
Black-Scholes model. We evaluate the performance of the generalized feed-forward neural
networks and Black-Scholes model on the European-style S&P Index call and put options
covering the out-of-sample period 1.6.2006 till 8.6.2007. We use the historical volatility as an
input to the BS model. In order to make the BS model more competitive we use the data that are
likely to be available in common trading situation instead of the constant volatility and interest
rate since these assumptions are known to violate the real situation in the market. We compare
them to the Generalized feed-forward networks with 1 layer, tanh hyperbolic tangent

transformation function and the conjugate gradient learning algorithm model.

The explanatory power of both models is sufficiently high for the call options. The overall
performance of the Black-Scholes model with historical volatility dominates the neural
networks. However as the option goes long-term and deep in-the-money the neural networks
improve their performance. These results acknowledge the well-known BS maturity and

moneyness biases (known as volatility smiles).

For put options the explanatory power of the option pricing models is rather low, however the
neural networks always perform better than BS model. Regardless the days to expiration BS
model under-prices the options while neural networks over-price the options. We assign the
worse results of models performance for puts (compared to calls) to the expectations of the

market participants about the future growth of the markets during the evaluated period.

For the future work the empirical issues addressed in this paper can also be reexamined using
data from American-style options, individual stock options or other more complex derivatives.

Moreover, hedging performance may be evaluated with respect to each model.
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