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B. Appendix

B.1. Scaling of Variables

We adopt the following scaling of variables. The neutral shock to technology is  and its growth

rate is  :


−1
= 

The variable, Ψ is an investment-specific shock to technology and it is convenient to define the

following combination of investment-specific and neutral technology:

+ = Ψ


1−
 

+ = 


1−
Ψ  (B.1)

Capital, ̄ and investment,  are scaled by 
+
 Ψ Foreign and domestic inputs into the produc-

tion of  (we denote these by 

 and 


  respectively) are scaled by 

+
  Consumption goods (




are imported intermediate consumption goods, 
 are domestically produced intermediate con-

sumption goods and  are final consumption goods) are scaled by 
+
  Government expenditure,

the real wage and real foreign assets are scaled by +  Exports (

 are imported intermediate

goods for use in producing exports and  are final export goods) are scaled +  Also,  is the

shadow value in utility terms to the household of domestic currency and  is the shadow value

of one unit of the homogenous domestic good. The latter must be multiplied by + to induce

stationarity. ̃ is the within-sector relative price of a good.  denotes the ratio between the

(Nash) wage paid to workers ̃ and the “shadow wage” paid by intermediate goods producers

to the employment agencies in the employment friction model. Thus,
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We define the scaled date  price of new installed physical capital for the start of period + 1 as

0 and we define the scaled real rental rate of capital as ̄

 :

0 = Ψ0 ̄

 = Ψ


 

where 0 is in units of the domestic homogeneous good.

The nominal exchange rate is denoted by  and its growth rate is  :

 =


−1


1



We define the following inflation rates:

 =


−1
  =
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 ∗ =
 ∗
 ∗−1



 =
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  =
 


 
−1

 

 =
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for  =    Here,  is the price of a domestic homogeneous output good, 

 is the price of the

domestic final consumption goods (i.e., the ‘CPI’),  ∗ is the price of a foreign homogeneous good,

 
 is the price of the domestic final investment good and  

 is the price (in foreign currency

units) of a final export good.

With one exception, we define a lower case price as the corresponding uppercase price divided

by the price of the homogeneous good. When the price is denominated in domestic currency units,

we divide by the price of the domestic homogeneous good, . When the price is denominated

in foreign currency units, we divide by  ∗  the price of the foreign homogeneous good. The

exceptional case has to do with handling of the price of investment goods,  
  This grows at a

rate slower than  and we therefore scale it by Ψ Thus,
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 =







 

 =







 (B.2)
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Ψ








Here,   means the price of an imported good which is subsequently used in the production

of exports in the case  =  in the production of the final consumption good in the case of

 =  and in the production of final investment goods in the case of  =  When there is just a

single superscript the underlying good is a final good, with  =    corresponding to exports,

consumption and investment, respectively.

B.2. Functional Forms

We adopt the following functional form for capital utilization  :

() = 05
2 +  (1− )+  ((2)− 1)  (B.3)

where  and  are the parameters of this function.

The functional form for investment adjustment costs, as well as its derivatives are:

̃ () =
1

2

n
exp
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i
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p
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(B.4)
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= 0  = +Ψ
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̃00 () =
1

2
̃00
n
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i
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−
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io
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In the employment friction model we assume a log-normal distribution for idiosyncratic pro-

ductivities of workers. This implies the following:

E ¡̄ ;¢ = Z ∞

̄



F (;) = 1− 

"
 

log
¡
̄



¢
+ 1

2
2


− 

#
 (B.6)

where  refers to the standard normal distribution and eq. (B.6) simply is eq. (4.7) spelled

out under this distributional assumption. We similarly spell out eq. (4.2):

F ¡̄;¢ =

Z ̄

0

F(;) = 1√
2

Z log(̄)+1
2

2




−∞
exp

−2
2  (B.7)

= 
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log (̄) + 1
2
2



¸
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B.3. Baseline Model

B.3.1. First Order Conditions for Domestic Homogenous Goods Price Setting

Substituting eq. (2.7) into eq. (2.6) to obtain, after rearranging,



∞X
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+++{
µ
+

+
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µ
+
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where
+

+

=  ̃  ≡
(

̃+ ···̃+1
+ ···+1    0

1  = 0


The  firm maximizes profits by choice of the within-sector relative price ̃ The fact that this

variable does not have an index,  reflects that all firms that have the opportunity to reoptimize

in period  solve the same problem, and hence have the same solution. Differentiating its profit

function, multiplying the result by ̃


−1

+1

  rearranging, and scaling we obtain:



∞X
=0

()

+ [̃ − +] = 0

where + is exogenous from the point of view of the firm:

+ = ++ ̃+
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After rearranging the optimizing intermediate good firm’s first order condition for prices, we

obtain,

̃ =


P∞
=0 ()


++



P∞
=0 ()


+

=




 




say, where


 ≡ 

∞X
=0

()

++

 
 = 

∞X
=0

()

+

These objects have the following convenient recursive representations:



"
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1−



+1 −  



#
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µ
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Turning to the aggregate price index:
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∙Z 1

0


1

1−
 

¸(1−)
(B.8)

=

∙¡
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¢
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1
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 +  (̃−1)

1
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¸(1−)
After dividing by  and rearranging:

1− 

³
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´ 1
1−

1− 
=
¡
̃
¢ 1
1−  (B.9)

In sum, the equilibrium conditions associated with price setting for producers of the domestic
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homogenous good are:39
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µ
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= 0 (B.10)
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̊ =

⎡⎢⎢⎣(1− )

⎛⎜⎝1− 

³
̃


´ 1
1−

1− 

⎞⎟⎠


+ 

µ
̃


̊−1

¶ 
1−

⎤⎥⎥⎦
1−


(B.12)
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(B.13)

̃ ≡ (−1) (̄)1−−κ (̆)κ (B.14)

B.3.2. Export Demand

Scaling (2.17) we obtain,

 = (

 )
− ∗ (B.15)

B.3.3. First Order Conditions for Export Goods Price Setting



"
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µ
̃+1
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¶ 1
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+1 − 

#
= 0 (B.16)



"
+





  + 

µ
̃+1
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+1 −

#
= 0 (B.17)
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³
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1− 
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+ 

µ
̃


̊−1

¶ 
1−

⎤⎥⎥⎦
1−


(B.18)

39When we linearize about steady state and set κ = 0 we obtain,

̂ − b̄ =


1 + 


¡
̂+1 − b̄+1¢+ 

1 + 

¡
̂−1 − b̄¢

− (1− )

1 + 
b̄

+
1

1 + 

(1− ) (1− )


c

where a hat indicates log-deviation from steady state.
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⎡⎢⎣1− 

³
̃


´ 1
1−

1− 

⎤⎥⎦
(1−)

=




(B.19)

When we linearize around steady state and set κ = 0 equations (B.16)-(B.19) reduce to:

̂ =


1 + 
̂


+1 +



1 + 
̂−1

+
1

1 + 

(1− ) (1− )


c


 

where a hat over a variable indicates log deviation from steady state.

B.3.4. Demand for Domestic Inputs in Export Production

Integrating eq. (2.24):Z 1

0


 =

µ




 

¶

(1− )

Z 1

0

 (B.20)

=
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0

¡
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−1 

( 
 )

−
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Define ̊ 
  a linear homogeneous function of 
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̊ 
 =

∙Z 1

0

¡
 


¢ −
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¸−1
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Then, ³
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−1
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0
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−1 

and Z 1
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 =
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¶

(1− ) (̊

 )

−
−1  (B.21)

where

̊ ≡
̊ 


 




and the law of motion of ̊ is given in (B.18).

We now simplify (B.21). Rewriting the second equality in (2.20), we obtain:
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or,









=
h
 (
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1− + (1− )
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Substituting into (B.21), we obtain:
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−
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−  ∗

B.3.5. Demand for Imported Inputs in Export Production

Scaling (2.26) we obtain:

 = 

⎛⎜⎝
h
 (


 )

1− + (1− )
i 1
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⎞⎟⎠


(̊ )
−
−1 ( )

− ∗ (B.22)

B.3.6. Value of Imports of the Intermediate Consumption Goods Producers

It is of interest to have a measure of the total value of imports of the intermediate consumption

good producers:


∗
 

∗


Z 1

0




In order to relate this to 
  we substitute the demand curve into the previous expression:


∗
 

∗


Z 1
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−1



= 
∗
 

∗
 

 (

 )


−1

Z 1
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where

̊

 =

∙Z 1

0

¡




¢ 
1−

¸ 1−


We conclude that the total value of imports accounted for by the consumption sector is:


∗
 

∗
 

 (̊

 )


1−  (B.23)

where

̊

 =

̊









The derivation for the value imports used by the investment and export production sectors are

analogous.
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B.3.7. Marginal Costs of Importers

Real marginal cost is



 = 





∗







∗
 = 





∗
 


 

 
 


 


∗
 (B.24)

= 












∗


for  =   

B.3.8. First Order Conditions for Import Goods Price Setting



⎡⎣+

 Ξ


 +

Ã
̃

+1



+1

! 1
1−

+1 − 

⎤⎦ = 0 (B.25)
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! 
1−

+1 −

⎤⎥⎦ = 0 (B.26)
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(B.27)
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(1−)
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 (B.28)

for  =   40 Here,

Ξ

 =

⎧⎨⎩   = 

  = 

  = 



40When we linearize around steady state and κ = 0

̂

 − b̄ =



1 + 


³
̂

+1 − b̄+1´+ 

1 + 

³
̂

−1 − b̄´

− (1− )

1 + 
b̄

+
1

1 + 

¡
1− 

¢ ¡
1− 
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B.3.9. Wage Setting Conditions in Baseline Model

Substituting eq. (2.37) into the objective function eq. (2.36),





∞X
=0

()

[−+

µ³
̃̃+···̃+1

+

´ 
1−

+

¶1+
1 + 

++̃̃+ · · · ̃+1
Ã
̃̃+ · · · ̃+1

+

! 
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+

1−  
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]

It is convenient to recall the scaling of variables:

+ = 
+
  ̄ =



+ 

 ̃ =


+
  = ̃ 

+
 = Ψ


1−
 

Then,

̃̃+ · · · ̃+1
+

=
̃̃+ · · · ̃+1

̄+
+
++

=
̃

̄+
+
 



=


³
̃

´
̄+

+
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̄

³
̃

´
̄+
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̄
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where

 =
̃+ · · · ̃+1

++−1 · · · +1++ · · · ++1
   0

= 1  = 0

It is interesting to investigate the value of  in steady state, as →∞ Thus,

 =

¡
 · · · +−1

¢ ¡
̄+1 · · · ̄+

¢(1−−κ) ¡
̆
¢κ ¡

+
¢

++−1 · · · +1++ · · · ++1
In steady state,

 =
(̄)

 (̄)
(1−−κ) ¡̆¢κ ¡+¢

̄
+

=

µ
̆

̄

¶κ ¡
+
¢−1

→ 0

in the no-indexing case, when ̆ = 1 κ = 1 and  = 0

Simplifying using the scaling notation,





∞X
=0

()
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̄
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+

¶1+
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+++

̄
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µ
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+
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]
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or,





∞X
=0

()

[−+
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̄
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´ 
1−

+

¶1+
1 + 

+++̄

µ
̄
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+
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]

Differentiating with respect to 





∞X
=0
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̄
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+

¶1+
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 (1 + )
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+++
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 ̄

µ
̄
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+
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1 + 
] = 0

Dividing and rearranging,





∞X
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Ãµ
̄
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+

!1+

+
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 ̄

µ
̄
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¶ 
1−

+
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Solving for the wage rate:


1−(1+)
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 =
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=0 ()


+

µ³
̄
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+

¶1+
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=0 ()

 ++


̄

³
̄
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+
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̄
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∞X
=0
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+
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̄
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+
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µ
̄
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¶ 
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+
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Thus, the wage set by reoptimizing households is:

 =

∙


̄

¸ 1−
1−(1+)



We now express  and  in recursive form:

 = 



∞X
=0

()

+

Ãµ
̄

̄+
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1−

+

!1+
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1+
 + 


+1

⎛⎝Ã ̄

̄+1
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¡
̄+1

¢(1−−κ)
(̆)
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+1++1

! 
1−

+1
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+()
2
+2

⎛⎝Ã ̄
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¡



+1
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̄+1̄
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¢(1−−κ) ¡
̆2
¢κ ¡

2+
¢

+2+1++2++1
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+2

⎞⎠1+

+
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 +

Ã
̄

̄+1

()

¡
̄+1

¢(1−−κ)
(̆)
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+1++1
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{+11+
+1

+
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¡
+1
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̄+2

¢(1−−κ)
(̆)
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+2++2

! 
1−

+2
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+2 + }
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 + 

Ã
̄

̄+1

()

¡
̄+1

¢(1−−κ)
(̆)

κ (+)


+1++1

! 
1− (1+)

+1

= 
1+
 + 

µ
̃+1

+1

¶ 
1− (1+)

+1

using,

+1 =
+1



=
̄+1

+
+1+1

̄
+
 

=
̄+1++1+1

̄

(B.29)
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Also,

 = 



∞X
=0

()
 ++




µ
̄

̄+



¶ 
1−

+

1−  

1 + 

=
+




1−  

1 + 

+
++1



µ
̄
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¶ 
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Ã
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¡
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+1

1−  
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+()
2 ++2



µ
̄
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¢
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+2
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+

µ
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Ã
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µ
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+2++2

!1+ 
1− ++2


+2

1−  

1 + 

+}

=
+




1−  

1 + 
+ 

µ
̄+1

̄

¶µ
̃+1

+1

¶1+ 
1−

+1

so that

 =
+




1−  

1 + 
+ 

µ
̄+1

̄

¶µ
̃+1

+1

¶1+ 
1−

+1

We obtain a second restriction on  using the relation between the aggregate wage rate and

the wage rates of individual households:

 =

∙
(1− )

³
̃

´ 1
1−

+  (̃−1)
1

1−

¸1−


Dividing both sides by  and rearranging,

 =

⎡⎢⎣1− 

³
̃


´ 1
1−

1− 

⎤⎥⎦
1−
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Substituting, out for  from the household’s first order condition for wage optimization:

1



⎡⎢⎣1− 

³
̃


´ 1
1−

1− 

⎤⎥⎦
1−(1+)

̄ = 

We now derive the relationship between aggregate homogeneous hours worked,  and ag-

gregate household hours,

 ≡
Z 1

0



Substituting the demand for  into the latter expression, we obtain,

 =

Z 1

0

µ




¶ 
1−



=


()


1−

Z 1

0

()


1− 

= ̊


1−
  (B.30)

where

̊ ≡ ̊



 ̊ =

∙Z 1

0

()


1− 

¸ 1−




Also,

̊ =

∙
(1− )

³
̃

´ 
1−

+ 

³
̃̊−1

´ 
1−

¸ 1−




so that,

̊ =

"
(1− ) ()


1− + 

µ
̃


̊−1

¶ 
1−

# 1−


=

⎡⎢⎢⎣(1− )

⎛⎜⎝1− 

³
̃


´ 1
1−

1− 

⎞⎟⎠


+ 

µ
̃


̊−1

¶ 
1−

⎤⎥⎥⎦
1−


 (B.31)
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In addition to (B.31), we have following equilibrium conditions associated with sticky wages41:

 =
+


̊
− 
1−

 
1−  

1 + 
+ 

µ
̄+1

̄

¶µ
̃+1

+1

¶1+ 
1−

+1 (B.33)

 = 

µ
̊
− 
1−

 

¶1+
+ 

µ
̃+1

+1

¶ 
1− (1+)

+1 (B.34)

1



⎡⎢⎣1− 

³
̃


´ 1
1−

1− 

⎤⎥⎦
1−(1+)

̄ =  (B.35)

B.3.10. Scaling Law of Motion of Capital

Using (2.38) we can write the law of motion of capital in scaled terms as:

̄+1 =
1− 

+Ψ
̄ +Υ

µ
1− ̃

µ
+Ψ

−1

¶¶
 (B.36)

B.3.11. Output and Aggregate Factors of Production

Below we derive a relationship between total output of the domestic homogeneous good,  and

aggregate factors of production.

41Log linearizing these equations about the nonstochastic steady state and under the assumption of κ = 0, we
obtain



⎡⎢⎢⎢⎣
0 b̄−1 + 1 b̄ + 2 b̄+1 + 3

¡
̂ − b̄¢+ 4

¡
̂+1 − ̄ b̄¢

+5
¡
̂−1 − b̄¢+ 6

¡
̂ − ̄ b̄¢

+7̂+ + 8̂ + 9̂

 + 10̂


 + 11̂





+12̂+ + 13̂++1

⎤⎥⎥⎥⎦ = 0 (B.32)

where

 =
[ − (1− )]

[(1− ) (1− )]

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
3
4
5
6
7
8
9
10
11
12
13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

¡
 − 

¡
1 + 2

¢¢

−


−
(1− )

−(1− )
−(1− )



(1−)
−(1− )



(1+)

−(1− )

−


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Consider the unweighted average of the intermediate goods:

 
 =

Z 1

0



=

Z 1

0

£
()

1−



 − + 

¤


=

Z 1

0

∙
1− 

µ




¶

 − + 

¸


= 1− 

µ




¶ Z 1

0

− + 

where  is the economy-wide average stock of capital services and  is the economy-wide

average of homogeneous labor. The last expression exploits the fact that all intermediate good

firms confront the same factor prices, and so they adopt the same capital services to homogeneous

labor ratio. This follows from cost minimization, and holds for all firms, regardless whether or

not they have an opportunity to reoptimize. Then,

 
 = 1− 


 

1−
 − + 

Recall that the demand for  is µ




¶ 
−1

=





so that

̊ ≡
Z 1

0

 =

Z 1

0



µ




¶ 
−1

 = 


−1


³
̊

´ 
1− 

say, where

̊ =

∙Z 1

0




1−
 

¸ 1−


 (B.37)

Dividing by ,

̊ =

⎡⎣Z 1

0

µ




¶ 
1−



⎤⎦
1−




or,

̊ =

⎡⎢⎢⎣¡1− 
¢⎛⎜⎝1− 

³
̃


´ 1
1−

1− 

⎞⎟⎠


+ 

µ
̃


̊−1

¶ 
1−

⎤⎥⎥⎦
1−


 (B.38)

The preceding discussion implies:

 = (̊)


−1 ̊ = (̊)


−1
£
1− 


 

1−
 − + 

¤
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or, after scaling by + 

 = (̊)


−1

∙


µ
1

Ψ

1

+


¶

1−
 − 

¸


where

 = ̄ (B.39)

We need to replace aggregate homogeneous labor,  with aggregate household labor,  From

eq. (B.30) we have  = ̊
− 
1−

  Plugging this is we obtain:

 = (̊)


−1

"


µ
1

Ψ

1

+


¶µ
̊
− 
1−

 

¶1−
− 

#


which completes the derivation.

B.3.12. Restrictions Across Inflation Rates

We now consider the restrictions across inflation rates implied by our relative price formulas. In

terms of the expressions in (B.2) there are the restrictions implied by 

 


−1,  =    and

  The restrictions implied by the other two relative prices in (B.2), 

 and 


  have already been

exploited in (2.16) and (B.36), respectively. Finally, we also exploit the restriction across inflation

rates implied by −1 and (2.23). Thus,







−1

=





(B.40)







−1

=





(B.41)







−1

=





(B.42)


−1

=

∗

(B.43)



−1
=


∗



 (B.44)

B.3.13. Endogenous Variables of the Baseline Model

In the above sections we derived the following 71 equations,

23 24 25 10 11 12 13 14 3 210 211 212 215 216 214

15 221 220 227 16 17 18 19 22 229 25 26 27 28 232

24 4 5 36 239 241 242 243 244 245 247 33 34 35 31

235 29 30 ?? 39 250 252 251 40 41 42 43 44 248
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which can be used to solve for the following 71 unknowns:

̄  ̄ 
∗
  


  


   


 


 


   


  


  


 


  


  


 

  

  


 


  


  


  0 +1 ̄+1         + 


  


  ̃ ̊  ̃


  ̊


  {  ̃


  ̊


 ;  =   }  ̃


  




Φ ̃ ̃
0
  ()  ̊ 


  


  


  

B.4. Equilibrium Conditions for Financial Frictions Model

B.4.1. Derivation of optimal contract

As noted in the text, we suppose that the equilibrium debt contract maximizes entrepreneur-

ial welfare, subject to the zero profit condition on banks and the specified required return on

household bank liabilities. The date  debt contract specifies a level of debt, +1 and a state

 + 1−contingent rate of interest, +1 We suppose that entrepreneurial welfare corresponds to

the entrepreneur’s expected wealth at the end of the contract. It is convenient to express welfare

as a ratio to the amount the entrepreneur could receive by depositing his net worth in a bank:



R∞
̄+1

£

+10̄+1 − +1+1

¤
 (;)

+1

=


R∞
̄+1

[ − ̄+1]  (;)

+10̄+1

+1

= 

½
[1− Γ(̄+1;)]


+1



¾


after making use of (3.1), (3.2) and

1 =

Z ∞

0

 (;) =

Z ∞

̄+1

 (;) +(̄+1;)

We can equivalently characterize the contract by a state-+1 contingent set of values for ̄+1

and a value of  The equilibrium contract is the one involving ̄+1 and  which maximizes

entrepreneurial welfare (relative to +1), subject to the bank zero profits condition. The

Lagrangian representation of this problem is:

max
{̄+1}



½
[1− Γ(̄+1;)]


+1



 + +1

µ
[Γ(̄+1;)− (̄+1;)]


+1



 −  + 1

¶¾


where +1 is the Lagrange multiplier which is defined for each period + 1 state of nature. The
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first order conditions for this problem are:



½
[1− Γ(̄+1;)]


+1



+ +1

µ
[Γ(̄+1;)− (̄+1;)]


+1



− 1
¶¾

= 0

−Γ̄(̄+1;)

+1



+ +1 [Γ̄(̄+1;)− ̄(̄+1;)]

+1



= 0

[Γ(̄+1;)− (̄+1;)]

+1



 −  + 1 = 0

where the absence of +1 from the complementary slackness condition reflects that we assume

+1  0 in each period + 1 state of nature. Substituting out for +1 from the second equation

into the first, the first order conditions reduce to:



⎧⎨⎩ [1− Γ(̄+1;)]

+1


+

Γ̄(̄+1;)

Γ̄(̄+1;)−̄(̄+1;)³
[Γ(̄+1;)− (̄+1;)]


+1


− 1
´ ⎫⎬⎭ = 0 (B.45)

[Γ(̄+1;)− (̄+1;)]

+1



 −  + 1 = 0 (B.46)

for  = 0 1 2 ∞ and for  = −1 0 1 2  respectively.
Since +1 does not appear in the last two equations, we conclude that  and ̄+1 are the

same for all entrepreneurs, regardless of their net worth.

B.4.2. Derivation of Aggregation of Across Entrepreneurs

Let  (+1) denote the density of entrepreneurs with net worth, +1 Then, aggregate average

net worth, ̄+1 is

̄+1 =

Z
+1

+1 (+1) +1

We now derive the law of motion of ̄+1 Consider the set of entrepreneurs who in period − 1
had net worth  Their net worth after they have settled with the bank in period  is denoted

 
  where

 
 = 

−10−1̄

 − Γ(̄;−1)


−10−1̄


  (B.47)

where ̄
 is the amount of physical capital that entrepreneurs with net worth  acquired in

period − 1 Clearing in the market for capital requires:

̄ =

Z


̄
  () 

Multiplying (B.47) by  () and integrating over all entrepreneurs,

 = 
−10−1̄ − Γ(̄;−1)


−10−1̄
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Writing this out more fully:

 = 
−10−1̄ −

½
[1−  (̄;−1)] ̄ +

Z ̄

0

 (;−1)

¾

−10−1̄

= 
−10−1̄

−
½
[1−  (̄;−1)] ̄ + (1− )

Z ̄

0

 (;−1) + 

Z ̄

0

 (;−1)

¾

−10−1̄

Note that the first two terms in braces correspond to the net revenues of the bank, which must

equal −1(−10−1̄ − ̄) Substituting:

 = 
−10−1̄ −

(
−1 +


R ̄
0

 (;−1)
−10−1̄

−10−1̄ − ̄

)
(−10−1̄ − ̄)

which implies eq. (3.5) in the main text.

B.4.3. Adjustment to the Baseline model When Financial Frictions Are Introduced

In this subsection we indicate how the equilibrium conditions of the baseline model must be

modified to accommodate financial frictions.

Consider the households. Households no longer accumulate physical capital, and the first

order condition, (2.42), must be dropped. No other changes need to be made to the household

first order conditions. Equation (2.45) can be interpreted as applying to the household’s decision

to make bank deposits. The household equations, (B.36) and (2.43), pertaining to the law of

motion and first order condition for investment respectively, can be thought of as reflecting that

the household builds and sells physical capital, or it can be interpreted as the first order condition

of many identical, competitive firms that build capital (note that each has a state variable in the

form of lagged investment). We must add the three equations pertaining to the entrepreneur’s

loan contract: the law of motion of net worth, the bank’s zero profit condition and the optimality

condition. Finally, we must adjust the resource constraints to reflect the resources used in bank

monitoring and in consumption by entrepreneurs.

We adopt the following scaling of variables, noting that 
 is set so that its scaled counterpart

is constant:

+1 =
̄+1


+


  =
 




+




Dividing both sides of (3.5) by 
+
  we obtain the scaled law of motion for net worth:

+1 =


+

£

 0−1̄ −−1

¡
0−1̄ − 

¢−  (̄;−1)

 0−1̄

¤
+  (B.48)

for  = 0 1 2  . Equation (B.48) has a simple intuitive interpretation. The first object in

square brackets is the average gross return across all entrepreneurs in period  The two negative
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terms correspond to what the entrepreneurs pay to the bank, including the interest paid by non-

bankrupt entrepreneurs and the resources turned over to the bank by the bankrupt entrepreneurs.

Since the bank makes zero profits, the payments to the bank by entrepreneurs must equal bank

costs. The term involving −1 represents the cost of funds loaned to entrepreneurs by the bank,

and the term involving  represents the bank’s total expenditures on monitoring costs.

The zero profit condition on banks, eq. (B.46), can be expressed in terms of the scaled variables

as:

Γ(̄+1;)− (̄+1;) =



+1

µ
1− +1

0̄+1

¶
 (B.49)

for  = −1 0 1 2  . The optimality condition for bank loans is (B.45).
The output equation, (2.50), does not have to be modified. Instead, the resource constraint

for domestic homogenous goods (2.51) needs to be adjusted for the monitoring costs:

 −  =  + (1− ) (

)
  +

¡

¢ µ +  ()

̄

+

¶
(1− ) (B.50)

+
h
 (


 )

1− + (1− )
i 
1−

(1− ) (̊

 )

−
−1 ( )

− ∗ 

where

 =
(̄;−1)

 0−1̄
+



When we bring the model to the data measured GDP is  adjusted for both monitoring costs

and, as in the baseline model, capital utilization costs:

 =  −  −
¡

¢ µ () ̄

+

¶
(1− ) 

Account has to be taken of the consumption by exiting entrepreneurs. The net worth of

these entrepreneurs is (1− ) and we assume a fraction, 1 − Θ is taxed and transferred in

lump-sum form to households, while the complementary fraction, Θ is consumed by the exiting

entrepreneurs. This consumption can be taken into account by subtracting

Θ
1− 


(+1 − )+ 

from the right side of (2.9). In practice we do not make this adjustment because we assume Θ is

sufficiently small that the adjustment is negligible.

The financial frictions brings a net increase of 2 equations (we add (B.45), (B.48) and (B.49),

and delete (2.42)) and two variables, +1 and ̄+1 This increases the size of our system to 72

equations in 72 unknowns. The financial frictions also introduce the additional shocks,  and 
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B.5. Equilibrium Conditions from the Employment Frictions Model

B.5.1. Labor Hours

Scaling (4.5) by 
+
 yields:

̄G = 



1

+
1−
1+

(B.51)

Note, that the ratio
G


will be the same for all cohorts since no other variables in (B.51) are indexed by cohort.

B.5.2. Vacancies and the Employment Agency Problem

An employment agency in the  cohort which does not renegotiate its wage in period  sets the

period  wage,  as in (2.34):

 = ̃−1−1 ̃ ≡ (−1) (̄)(1−−κ) (̆)κ(+)  (B.52)

for  = 1   − 1 (note that an agency that was in the  cohort in period  was in cohort − 1
in period − 1) where κ   + κ ∈ (0 1) 
After wages are set, employment agencies in cohort  decide on endogenous separation, post va-

cancies to attract new workers in the next period and supply labor services,   into competitive

labor markets. Simplifying,


¡
0  

¢
=

−1X
=0



+


max
̃

+

[
¡
+E+ − Γ

£
1−F 

+

¤¢
+ (B.53)

−+

++



¡
̃



¢ ¡
1− F 

+

¢
]

+

+

+



³
0+  ̃+

´


For convenience, we omit the expectation operator  below. Let

Writing out (B.53):
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¡
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¡
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(B.54)
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We derive optimal vacancy posting decisions of employment agencies by differentiating (B.54)
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with respect to ̃0 and multiply the result by
¡
̃0
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 + 
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  to obtain:
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Since the latter expression must be zero, we conclude:
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Next, we obtain simple expressions for the vacancy decisions from their first order necessary

conditions for optimality. Multiplying the first order condition for ̃1+1 by¡
̃1+1

1−
+1 + 

¢ 1
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we obtain:
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Substitute out the period +2 and higher terms in this expression using the first order condition

for ̃0  After rearranging, we obtain,
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Following the pattern set with ̃1+1 multiply the first order condition for ̃
2
+2 by¡

̃2+2
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Substitute the period  + 3 and higher terms in the first order condition for ̃2+2 using the first

order condition for ̃1+1 to obtain, after rearranging,
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Continuing in this way, we obtain,
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for  = 0 1   − 2 Now consider the first order necessary condition for the optimality of

̃−1+−1 After multiplying this first order condition by¡
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Making use of our expression for  , we obtain:
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The above first order conditions apply over time to a group of agencies that bargain at date

 We now express the first order conditions for a fixed date and different cohorts:
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for  = 0   − 2.

Scaling by 
+
 yields the following scaled first order optimality conditions:
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The scaled vacancy first order condition of agencies that are in the last period of their contract

is:


¡
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[
¡
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B.5.3. Agency Separation Decisions

This section presents details of the employment agency separation decision. We start by consid-

ering the separation decision of a representative agency in the  = 0 cohort which renegotiates

the wage in the current period. After that, we consider   0
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The Separation Decision of Agencies that Renegotiate the Wage in the Current

Period We start by considering the impact of ̄0 on agency and worker surplus, respectively.

The aggregate surplus across all the 0 workers in the representative agency is given by (4.18).

The object, F0  is a function of ̄0 as indicated in (4.2). We denote its derivative by

F 0
 ≡

F 


̄



 (B.59)

for  = 0 − 1 Where convenient, in this subsection we include expressions that apply to the
representative agency in cohort   0 as well as to those in cohort,  = 0 According to (4.5),

̄0 affects 
0
 via its impact on hours worked, 0 Hours worked is a function of ̄

0
 because G0

is (see (4.6), (4.5) and (4.13)). These observations about  0
 also apply to 


  for   0 Thus,

differentiating (4.13) we obtain:
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¸
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where

 0 ≡


̄



=
1


()

1− 



1−  

1 + 
G0  (B.61)

and

G0 ≡
G
̄




 (B.62)

The counterpart to (B.61) in terms of scaled variables is:

 0 ≡
1


()

1− ̄+



1−  

1 + 
G0 (B.63)

The value of being unemployed,  is not a function of the ̄
0
 chosen by the representative

agency because  is determined by economy-wide aggregate variables such as the job finding rate

(see (4.14)).

According to (4.12) agency surplus per worker in 0 is given by  () and this has the following

representation:

 () = max
̄0

̃
¡
; ̄

0


¢ ¡
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¢


Here, ̃ (; ̄
0
 ) is given by (4.19) and
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for  = 0.

In (4.19) and (B.64), it is understood that 

+ ̃


+ are connected by (4.8). Thus, the surplus

of the representative agency with workforce, 0  expressed as a function of an arbitrary value of

̄0 is given by (4.20). Differentiation of ̃ with respect to ̄

 need only be concerned with the

impact of ̄

 on G and  Generalizing (4.19) to cohort :
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where  0 and G0 are defined in (B.61) and (B.62), respectively.
We now evaluate F 0

 and G0 for  ≥ 0 We assume that productivity,  is drawn from a

log-normal distribution having the properties,  = 1 and   (log ) = 2 This assumption

simplifies the analysis because analytic expressions are available for objects such as F 0
  G0 .

Although these expressions are readily available in the literature (see, for example, BGG), we

derive them here for completeness. It is easily verified that F has the following representation:42
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√
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−(+1
2
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2

22 

where  = log  Combining the exponential terms,
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√
2

Z log ̄

−∞
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Now, make the change of variable,

 ≡ − 1
2
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so that

 =
1




Substituting into the expression for F :

F ¡̄;¢ = 1√
2

Z log(̄)+1
2
2



−∞
exp

−2
2 

This is just the standard normal cumulative distribution, evaluated at
¡
log (̄) + 1

2
2
¢
 Dif-

ferentiating F , we obtain an expression for (B.59):

F 0
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1

̄
√
2
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−(
log(̄)+1

2
2
)

2

22  (B.66)

42Note that  = 1 is imposed by specifying  log  = −22
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The object on the right of the equality is just the normal density with variance 2 and mean

−22 evaluated at log (̄) and divided by ̄. From (4.7) we obtain:

E0 = −̄F 0
  (B.67)

Differentiating (B.62),

G0 =
E0
¡
1−F 



¢
+ EF 0

£
1−F 



¤2 (B.68)

The surplus criterion governing the choice of ̄0 is (4.21). The first order necessary condition

for an interior optimum is given by (4.22), which we reproduce here for convenience:
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where we have made use of the fact that the wage paid to workers in the bargaining period is

denoted ̃. After substituting from (B.60) and (B.65):
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In scaled terms this is
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Dividing through by 
+
 yields:
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The Separation Decision of Agencies that Renegotiated in Previous Periods We now

turn to the ̄

 decision, for  = 1  −1 The representative agency that selects ̄ is a member

of the cohort of agencies that bargained  periods in the past. We denote the present discounted

value of profits of the representative agency in cohort  by 

 (−) :
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Here, we exploit that 




¡


  −

¢
is proportional to 


  as in the case  = 0 considered in (4.12).

In particular, 

 (−) is not a function of 


 and corresponds to the object in (B.64) with the

time index,  replaced by −  We can write 

 (−) in the following form:
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from a generalization of (4.19) to  = 1 − 1
In this way, we obtain an expression for agency surplus for agencies that have not negotiated

for  periods which is symmetric to (4.20):
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Our expression for total surplus is the analog of (4.21):h
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Differentiating,
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which corresponds to (4.22). Here, ̃̄
¡
−1; ̄




¢
is the analog of (B.65) with index 0 replaced by

 After substituting from the analogs for cohort  of (B.60), (B.65):
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Scaling analogously to (B.70) and plugging in ̃− = −̄−−
+
− and ̄

+
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obtain:



µ
−−̄−

1−  

1 + 
−





+

¶
 0 + 

£¡
̄G −−̄−−

¢
 0 + ̄G0 

¤
=(B.74)h



³




+
− +

´
+ ̃



+

i F 0


1−F 


Finally, we need an explicit expression for ̃
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this we use (B.64) to write out 
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for  = 0   − 1 Plugging in for − = ̃− = −̄−−
+
− and scaling one obtains:
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which can be rewritten as
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B.5.4. Bargaining Problem

The first order condition associated with the Nash bargaining problem is:

+ + (1− )
£
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¤
 = 0 (B.76)

after division by + .

The following is an expression for  evaluated at  = ̃ in terms of scaled variables:
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We also require the derivative of  with respect to  i.e. the marginal surplus of the employ-

ment agency with respect to the negotiated wage. By the envelope condition, we can ignore the

impact of a change in  on endogenous separations and vacancy decisions, and only be concerned

with the direct impact of  on  . Taking the derivative of (B.54):

 = − ¡1−F0 ¢ 0
−+1


Γ11+1

¡
0 + 

¢ ¡
1−F1+1

¢ ¡
1−F0

¢
−2+2


Γ22+2

¡
0 + 

¢ ¡
1+1 + 

¢ ¡
1− F2+2

¢ £
1−F1+1

¤ £
1−F0

¤
−− −1

+−1


Γ−1−1+−1
¡
0 + 

¢ ¡
1+1 + 

¢ · · · ¡−2+1 + 
¢×¡

1−F−1
+−1

¢ · · · £1− F0 ¤ 
Let,

Ω

+ =

⎧⎪⎨⎪⎩
¡
1−F 

+

¢ −1Y
=0

¡
+ + 

¢ ¡
1−F 

+

¢
  0

1−F0  = 0

 (B.78)

It is convenient to express this in recursive form:
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for  = 1 2  . It is convenient to define these objects at date  as a function of variables dated

 and earlier for the purposes of implementing these equations in Dynare:
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Then, in terms of scaled variables we obtain:
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Scaling  
 by 

+
  we obtain:
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In our analysis of the Nash bargaining problem, we must have the derivative of  0
 with respect

to the wage rate. To define this derivative, it is useful to have:

M+ =
¡
1− F0

¢ · · · ¡1−F 
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 (B.81)

for  = 0   − 1 Then, the derivative of  0 which we denote by  0
 ()  is:
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Note that  has no impact on the intensity of labor effort This is determined by (B.51), inde-

pendent of the wage rate paid to workers.

Scaling (4.14),

+ =  (1−  ) + 

++1

+

[

++1 + (1− )++1]· (B.83)

This value function applies to any unemployed worker, whether they got that way because they

were unemployed in the previous period and did not find a job, or they arrived into unemployment

because of an exogenous separation, or because they arrived because of an endogenous separation.

B.5.5. Resource Constraint in the Employment Frictions Model

We assume that the posting of vacancies uses the homogeneous domestic good. We leave the

production technology equation, (2.50), unchanged, and we alter the resource constraint:
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Measured GDP is  adjusted for both recruitment (hiring) costs and capital utilization costs:
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B.5.6. Final Equilibrium Conditions

Total job matches must also satisfy the following matching function:

 =  (1− )

1−  (B.85)

where
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  (B.86)

and  is the productivity of the matching technology.

In our environment, there is a distinction between effective hours and measured hours. Effec-

tive hours is the hours of each person, adjusted by their productivity,  Recall that the average

productivity of a worker in working in cohort  (i.e., who has survived the endogenous produc-

tivity cut) is E 
¡
1− F 



¢
 The number of workers who survive the productivity cut in cohort 

is
¡
1− F 



¢


  so that our measure of total effective hours is:
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In contrast, total measured hours is:
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The job finding rate is:

 =
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 (B.88)

The probability of filling a vacancy is:

 =



 (B.89)

Total vacancies  are related to vacancies posted by the individual cohorts as follows:

 =
1
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Note however, that this equation does not add a constraint to the model equilibrium. In fact,

it can be derived from the equilibrium equations (B.89), (4.16) and (4.8).

B.5.7. Characterization of the Bargaining Set

Implicitly, we assumed that the scaled wage,


 =

 


+ 
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paid by an employment agency which has renegotiated most recently  periods in the past is

always inside the bargaining set, [w
¯

 ̄


]  = 0 1   − 1. Here, w̄

 has the property that if


  ̄

 then the agency prefers not to employ the worker and w¯

 has the property that if 


  w¯




then the worker prefers to be unemployed. We now describe our strategy for computing w
¯

 and

w̄


The lower bound, w
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cohort  to zero. By (B.80):
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for i = 0, ..., N - 1. In steady state, this is
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where a variable without time subscript denotes its steady state value. We now consider the

upper bound, ̄
, which sets the surplus + of an agency in cohort  to zero, i = 0, ..., N - 1.

From (B.77)
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for i = 0, ...., N - 1. In steady state:
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For the dynamic economy, the additional unknowns are the 2 variables composed of w
¯

 and ̄



for i = 0, 1, ..., N - 1. We have an equal number of equations to solve for them.

B.5.8. Summary of Equilibrium Conditions for Employment Friction Model

This subsection summarizes the equations of the labor market that define the equilibrium and how

they are integrated with the baseline model. The equations include the  efficiency conditions
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that determines hours worked, (B.51); the law of motion of the workforce in each cohort, (4.9);

the first order conditions associated with the vacancy decision, (B.55), (B.58),  = 0  −1; the
derivative of the employment agency surplus with respect to the wage rate, (B.79); scaled agency

surplus, (B.77); the value function of a worker,  
+ (B.80); the derivative of the worker value

function with respect to the wage rate, (B.82); the growth adjustment term,  (B.57); the scaled

value function for unemployed workers, (B.83); first order condition associated with the Nash

bargaining problem, (B.76); the (suitably modified) resource constraint, (B.84); the equations

that characterize the productivity cutoff for job separations, (B.70) and (B.74); the equations

that characterize ̃


+
(B.75); the value of finding a job, (4.15); the job finding rate, (B.88);

the probability of filling a vacancy, (B.89); the matching function, (4.16); the wage updating

equation for cohorts that do not optimize, (B.52); the equation determining total employment,

(B.86); the equation determining Ω

+ (B.78); the equation determining the hiring rate, 


 (4.8);

the equation determining the number of matches (the matching function), (B.85); the definition

of total effective hours (B.87); the equations defining M
  (B.81); the equations defining F 

 

(B.7); the equations defining E  , (B.6); the equations defining G0 (B.68); the equations defining
F 0
 (B.66)

The following additional endogenous variables are added to the list of endogenous variables

in the baseline model:



  E F 

  M
  ̄


  ̃


   Ω


+   + 



+
 + 

0


 
+   


  ̃ G0 F 0

 and ̃


+

We drop the equations from the baseline model that determines wages, eq. (B.33), (B.34),

(B.35),(B.31) and (2.35).

B.6. Summary of equilibrium conditions of the Full Model

In this subsection, we integrate financial frictions and labor market frictions together into what

we call the full model.

The equations which describe the dynamic behavior of the model are those of the baseline

model discussed in section B.3.13 and section B.3 plus those discussed in the financial frictions

model specified in section B.4 plus those discussed in the employment friction model presented in

section B.5.8. Finally, the resource constraint needs to be adjusted to include monitoring as well

as recruitment (hiring) costs. Similarly measured GDP is adjusted to exclude both monitoring

costs and recruitment costs (and, as in the baseline model, capital utilization costs).

B.7. Endogenous Priors

We select our model priors endogenously, using a strategy similar to the one suggested by Del

Negro and Schorfheide (2008). We use a sequential-learning interpretation of the data. We begin
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with an initial set of priors. These have the form that is typical in Bayesian analyses, with

the priors on different parameters being independent. Then, we suppose we are made aware of

several statistics (i.e., second moments, or impulse response functions) that have been estimated

in a sample of data that is independent of the data currently under analysis (we refer to these data

as the ‘pre-sample’). We use classical large sample theory to form a large-sample approximation to

the likelihood for the pre-sample statistics.43 The product of the initial priors and the likelihood

of the pre-sample statistics form the ‘endogenous priors’ we take to the sample of data currently

under analysis. Although our initial priors are independent across parameters, the procedure

results in a set of priors for the actual sample that are not independent across parameters.

Our method for endogenizing priors differs from the one suggested by Del Negro and Schorfheide

(2008), which is based on fitting a −th vector autoregression (VAR) to a presample. As is well
known, this likelihood is only a function of the sample variance covariance matrix and −lagged
covariances. The likelihood of these second moments, conditional on the DSGEmodel parameters,

is known exactly, and requires no large-sample approximation. This is an important advantage of

the Del Negro and Schorfheide (2008) approach over the one proposed here. The advantage of our

approach is that it provides the user greater flexibility in which statistics to target. For example,

a researcher may have prior information on the variances of 10 variables and suppose there are 20

model parameters. To apply this prior information in the Del Negro-Schorfheide (2008) approach,

one sets  = 0 and works with the variance covariance of the 10 variables. But, herein lies a dif-

ficulty. This variance-covariance matrix represents 55 statistics, far more than the 10 over which

the researcher actually has priors. Given there are only 20 model parameters, even if the priors

are imposed dogmatically (by imagining that the pre-sample is large) the researcher may still not

be able to ‘hit’ his/her true priors - the 10 variances. Because our approach focuses only on the

statistics over which the researcher actually has prior information, the example just described is

not a problem. With the approach described here, the assumption that the pre-sample is large

will in general imply that the 10 variances are ‘hit’ exactly, with 10 degrees of freedom to spare.

Denote our presample observations by {̃;  = 1  }. The column vector,  is related to

the vector of observed variables,  by

̃ = 

The stochastic process,  is assumed to have mean zero (say, because the sample mean has been

removed). The column vector composed of the variances in  is denoted  We estimate the

elements of  by standard GMM methods. In particular, define the following GMM euler error:

 ( ) =  (̃̃
0)− 

where  () denotes the column vector formed from the diagonal elements of the matrix, 

Note that


¡
 0
¢
= 0

43In this respect, our approach resembles the approach taken in Chernozhukov and Hong (2003).
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where  0 denotes the true value of  Note too, that  need not specifically be a set of variances,

it could include any sort of second moment, or even impulse responses from a VAR. We suppose

that  is a set of variances, only for specificity.

The GMM estimator of  is ̂ such that



³
̂
´
≡ 1



X
=1



³
̂
´
= 0

This corresponds to the standard variance estimator. The sampling uncertainty in ̂ can be

estimated using standard GMM formulas. Thus, define

 =
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 0 |= 0 = −
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Then, for  large,
√
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 (B.90)

The zero-frequency spectral density, 0 is estimated using ̂ where
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Here,

̂ () =

(
1

−
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 = 0  

̂ (−)0  = −1  


In practice, we set  = 1 and  = 2 We conclude that, for large 

̂ ˜ 

Ã
 0
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(B.91)

We suppose that the data are generated by our DSGEmodel with parameters, . The mapping

from  to  is denoted by  ()  Results (B.91) implies the following. Conditional on a set of

parameter values, , and for sufficiently large  the density of ̂ is


³
̂ |

´
=

µ


2

¶
2 ¯̄̄
̂
¯̄̄− 1

2

exp

∙
−
2

³
̂ −  ()

´0
̂−1

³
̂ −  ()

´¸
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Here, |·| denotes the determinant operator and  is the number of elements in  The object,


³
̂ |

´
 is the likelihood of ̂ , given  Let  () denote our primitive priors, before observing

̂  According to Bayes rule, after observing ̂ the posterior on those priors is:


³
|̂

´
=


³
̂ |

´
 ()R

̃

³
̂ |̃

´

³
̃
´
̃

 (B.92)

The denominator of this expression is the marginal density of ̂  Since this marginal density is

not a function of  we need not be concerned with it when we compute the mode of the posterior

distribution after observing our actual sample of data (denote this by  ). The marginal density

of ̂ is also not of direct concern to us when we apply the MCMC algorithm to approximate the

posterior distribution of  after observing both ̂ and  (we denote this by 
³
| ̂

´
) However,

the marginal density of ̂ does need to be computed if we wish to compare 
³
|̂

´
with the final

posterior distribution We turn to a brief discussion of this now.

One strategy for computing 
³
|̂

´
is to use the MCMC algorithm. This would be computed

using a jump distribution whose variance is proportional to minus the inverse of the second

derivative of 
³
̂ |

´
 ()  evaluated at ∗ where

∗ = argmax



³
̂ |

´
 ()  (B.93)

We assume there is unique interior solution to the maximization problem in (B.93). An alternative

strategy for computing 
³
|̂

´
uses the Laplace approximation. That approximation is only

justified when  is large, but then our basic 
³
|̂

´
only has an asymptotic justification anyway.

A disadvantage of the Laplace approximation is that, by construction, it is symmetric around ∗

and thus it may hide asymmetries induced by possible asymmetries in  () 

To derive the Laplace approximation to 
³
|̂

´
 define

 () ≡ log 
³
|̂

´
= log 

³
̂ |

´
+ log  ()− ,

where  is not a function of  Define

 = −
2 ()

0
|=∗

The second order Taylor series expansion of  about  = ∗ is:

 () =  (∗)− 1
2
( − ∗)0  ( − ∗) 

where the slope term is zero because of our assumption that the solution to (B.93) is interior.

Then,


³
̂ |

´
 () ≈ 

³
̂ |∗

´
 (∗) exp

∙
−1
2
( − ∗)0  ( − ∗)

¸
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Note that this approximation is exact for large enough  since in this case  is dominated by 

in which case  is Normal. Note also that

1
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¸
is a multivariate normal distribution, so thatZ
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Bringing together the previous results, we obtain:Z

³
̂ |

´
 () 

≈
Z


³
̂ |∗

´
 (∗) exp

∙
−1
2
( − ∗)0  ( − ∗)

¸


=

³
̂ |∗

´
 (∗)

1

(2)

2
||

1
2

Z
1

(2)

2

||
1
2 exp

∙
−1
2
( − ∗)0  ( − ∗)

¸


=

³
̂ |∗

´
 (∗)

1

(2)

2
||

1
2



by the integral property of the normal distribution. We now have the Laplace approximation to

the denominator in (B.92). We therefore have a simple expression for 
³
|̂

´


B.8. Calibration of Tax Rates

We briefly discuss the treatment of the tax rates. The data discussed below refers to the sample

period 1995q1-2010q3, or a subset of that period when data availability is limited. In the versions

of our model without financial frictions, capital is accumulated and capital income accrues directly

to the household. However, an observationally equivalent representation of the model has these

activities occurring in the firm. This latter interpretation is the convenient one, when thinking

about the data and, in particular, the measurement of We set the tax rate on capital income,

 to 025We arrived at this number as follows. The statutory rate on household capital income

is 30 percent and the statutory rate on corporate income is 28 percent. Combining these two

numbers we conclude that the statutory rate on corporate and household income is 50 percent.

Indirect evidence from Devereux, Griffith and Klemm (2002) suggests to us that the effective tax

on capital income may be one half this amount, and this is why we set  = 025 in the model. We

reach this conclusion because of the Devereux, Griffith and Klemm observation that the effective

corporate income tax is roughly 1/2 of the statutory rate and we adopt the rough approximation

that the same applies to the household tax rate. Our assumption that  is constant is also

40



motivated by Devereux, Griffith and Klemm. Their measure of the corporate component of the

effective capital income tax rate exhibits very little variation over the part that overlaps with our

sample, i.e. 1995-2005.

Now we turn to the tax rate on bonds,   We set   = 0 to be able to match the pre-tax real

rate on bonds of 2.25%. Setting   = 0 is required to get the interest rate on bonds to be this

low, given the high GDP growth rate, log utility of consumption and  below 1.

For evidence on  we use the data collected by ALLV. Based on these data, we set the payroll

tax rate,  to 0.35. Data on the value-added tax on consumption,   and the personal income

tax rate that applies to labor,   are available from Statistics Sweden and indicate   = 025 and

  = 03. We keep these tax rates constant because they exhibit very little variability over this

period.

B.9. Measurement Equations

Below we report the measurement equations we use to link the model to the data. Our data

series for inflation and interest rates are annualized in percentage terms, so we make the same

transformation for the model variables i.e. multiplying by 400:44


 = 400( − 1)− 1400(− 1)


∗
 = 400(∗ − 1)− 1400(

∗ − 1)



 = 400 log  − 1400 log  + 





 = 400 log  − 1400 log 

 + 




 = 400 log  − 1400 log 

 + 



∗
 = 400 log ∗ − 1400 log 

∗

where 
 denote the measurement errors for the respective variables. In addition, we introduce

the parameters 1 ∈ {0 1} and 2 ∈ {0 1}which allows us to handle demeaned and non-demeaned
data. In particular, our data for inflation and interest rates is not demeaned, and we therefore set

1 = 0 An alternative specification would be that we use demeaned inflation and interest rates

which would require to set 1 = 1 in order to correctly match the data with the model.

We match hours worked per capita in terms of deviation from steady state. First differences

and deviations from steady state are written in percentages so model variables are multiplied by

100 accordingly:

̂
 = 100

µ


 −



¶
+ 



44Note that in the data we measure  = 400(ln 
 − ln 

−1 ). In the model, we have defined  =

−1



Matching data with the model results in the above measurement equations for inflation.
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We use demeaned first-differenced data for the remaining variables. This implies setting the

second indicator variable 2 = 1.

∆ log  
 = 100(log + +∆ log
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Note that neither measured GDP nor measured investment include investment goods used

for capital maintenance. The reason is that the documentation for calculation of the Swedish

National Accounts (SOU (2002)) indicate that these are not included in the investment definition

(and the national accounts are primarily based on the expenditure side). To calculate measured

GDP we also exclude monitoring costs and recruitment costs. Note that it is measured GDP that

enters the Taylor rule.

The real wage is measured by the employment-weighted average Nash bargaining wage in the

model:



 =

1



−1X
=0



−−̄−

Given this definition the measurement equation for demeaned first-differenced wages is:

∆ log()
 = 100∆ log

̃

+ 

= 100(log+ +∆ log

 )− 2100(log +) + 



Finally, we measure demeaned first-differenced net worth, interest rate spread and unemploy-

ment as follows:

∆ log
 = 100(log+ +∆ log)− 2100(log+) + 



∆ log = 100∆ log(+1 −) = 100∆ log
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